(本題滿分10分)
在   ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點(diǎn),連結(jié)EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是          ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是         ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

(1)平行四邊形
(2)菱形
(3)菱形
(4)略解析:
(本小題滿分10分)
解:(1)四邊形EGFH是平行四邊形.                    …………………………1分
證明:∵   ABCD的對(duì)角線AC、BD交于點(diǎn)O.
∴點(diǎn)O是   ABCD的對(duì)稱中心.
∴EO=FO,GO=HO.
∴四邊形EGFH是平行四邊形.                          …………………………4分
(2)菱形.                                            …………………………5分
(3)菱形.                                            …………………………6分
(4)四邊形EGFH是正方形.                           …………………………7分
證明:∵AC=BD,∴   ABCD是矩形. 又∵AC⊥BD, ∴   ABCD是菱形.
∴   ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°.OB=OC.
∵EF⊥GH ,∴∠GOF=90°.∴∠BOG=∠COF.
∴△BOG≌△COF.∴OG=OF,∴GH=EF.               …………………………9分
由(1)知四邊形EGFH是平行四邊形,又∵EF⊥GH,EF=GH.
∴四邊形EGFH是正方形.                             …………………………10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O出發(fā),每次向上平移2個(gè)單位長度或向右平移1個(gè)單位長度.

(1)實(shí)驗(yàn)操作: 在平面直角坐標(biāo)系中描出點(diǎn)P從點(diǎn)O出發(fā),平移1次后,2次后,3次后可能到達(dá)的點(diǎn),并把相應(yīng)點(diǎn)的坐標(biāo)填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點(diǎn)P可能到達(dá)的點(diǎn)在我們學(xué)過的一種函數(shù)的圖象上,如:平移1次后在函數(shù)               的圖象上;平移2次后在函數(shù)              的圖象上……由此我們知道,平移次后在函數(shù)              的圖象上.(請(qǐng)?zhí)顚懴鄳?yīng)的解析式)

(3)探索運(yùn)用:點(diǎn)P從點(diǎn)O出發(fā)經(jīng)過次平移后,到達(dá)直線上的點(diǎn)Q,且平移的路徑長不小于50,不超過56,求點(diǎn)Q的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)

在直角三角形ABC中,∠C=90°,,∠B的平分線BD交AC于D,BD=16.求AB的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(海南卷)數(shù)學(xué)解析版 題型:解答題

(本題滿分10分)
在直角三角形ABC中,∠C=90°,,∠B的平分線BD交AC于D,BD=16.求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(山東萊蕪) 題型:解答題

(本題滿分10分)
在   ABCD中,AC、BD交于點(diǎn)O,過點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點(diǎn),連結(jié)EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是          ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是         ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆海南省三亞市七年級(jí)下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本題滿分10分)

在直角三角形ABC中,∠C=90°,,∠B的平分線BD交AC于D,BD=16.求AB的長.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案