【題目】如圖,RtABC中,∠ACB=90°,AC=2BC=4,CDABC的中線,E是邊BC上一動點,將BED沿ED折疊,點B落在點F處,EF交線段CD于點G,當DFG是直角三角形時,則CE=__________.

【答案】1

【解析】

根據(jù)題意分兩種情形進行解答:①當∠DGF=90°時,作DHBCH.②當∠GDF=90°,作DHBCH,DKFGK.

解:①如圖當∠DGF=90°時,作DHBCH.

RtACB中,∠ACB=90°,AC=2,BC=4,

,

AD=DB

CD=AB=,

DHAC,AD=DB

CH=BH,

DH=DG=AC=1

CG= -1,

DC=DB,

∴∠DCB=B,

cosDCB=cosB= ,

CE=CG÷cosDCB=

②如圖當∠GDF=90°,作DHBCH,DKFGK.

可得四邊形DKEH是正方形,即EH=DH=1,

CH=BH=2

.CE=1,

綜上,滿足條件的CE的值為1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

觀察猜想

如圖1,有公共直角頂點的兩個不全等的等腰直角三角尺疊放在一起,點上,點.

1)在圖1中,你發(fā)現(xiàn)線段,的數(shù)量關系是___________,直線,的位置關系是________.

操作發(fā)現(xiàn)

2)將圖1中的繞點逆時針旋轉一個銳角得到圖2,這時(1)中的兩個結論是否成立?作出判斷并說明理由;

拓廣探索

3)如圖3,若只把有公共直角頂點的兩個不全等的等腰直角三角尺改為有公共頂角為(銳角)的兩個不全等等腰三角形,繞點逆時針旋轉任意一個銳角,這時(1)中的兩個結論仍然成立嗎?作出判斷,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新華商場銷售某種冰箱,每臺進貨價為2500元.市場調研表明:當銷售價為2900元時,平均每天能售出8臺;而當銷售價每降低50元時,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,設每臺冰箱的定價為x元,則x滿足的關系式為(

A. (x2500)(8+4×)=5000 B. (2900x2500)(8+4×)=5000

C. (x2500)(8+4×)=5000 D. (2900x)(8+4×)=5000

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(不與點A重合).DEABAC于點FCEAM,連接AE

1)如圖1,當點DM重合時,求證:四邊形ABDE是平行四邊形;

2)如圖2,當點D不與M重合時,(1)中的結論還成立嗎?請說明理由.

3)如圖3,延長BDAC于點H,若BHAC,且BHAM,求∠CAM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與拋物線相交于AB兩點,且點A1,-4)為拋物線的頂點,點Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;

3)若點Qy軸上一點,且△ABQ為直角三角形,求點Q的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃經(jīng)銷A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價、售價如下表所示.

A

B

進價(元/盞)

40

65

售價(元/盞)

60

100

(1)若該商場購進這批臺燈共用去2500元,問這兩種臺燈各購進多少盞?

(2)在每種臺燈銷售利潤不變的情況下,若該商場銷售這批臺燈的總利潤不少于1400元,問至少需購進B種臺燈多少盞?

(3)若該商場預計用不少于2500元且不多于2600元的資金購進這批臺燈,為了打開B種臺燈的銷路,商場決定每售出一盞B種臺燈,返還顧客現(xiàn)金a元(10a20),問該商場該如何進貨,才能獲得最大的利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于點A、B,與y軸分別交于點C,其中點,點,且.

1)求拋物線的解析式;

2)點P是線段AB上一動點,過PBCD,當面積最大時,求點P的坐標;

3)點M是位于線段BC上方的拋物線上一點,當恰好等于中的某個角時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設點PQ運動的時間為t秒.

(1)A、B兩點的坐標。

(2)求當t為何值時,△APQ△AOB相似,并直接寫出此時點Q的坐標.

(3)t=2時,在坐標平面內,是否存在點M,使以A、PQ、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A1、A2、……、An、An+1是x軸上的點,且OA1=A1A2=A2A3=……=AnAn+1=1,分別過點A1、A2、……、An、An+1作x軸的垂線交直線y=2x于點B1、B2、……、Bn、Bn+1,連接A1B2、B1A2、A2B3、B2A3、……、AnBn+1、BnAn+1,依次相交于點P1、P2、P3、……、Pn,△A1B1P1、△A2B2P2、……、△AnBnPn的面積依次為S1、S2、……、Sn,則Sn為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案