根據(jù)提示填空(或填上每步推理的理由)

如圖,∠1=∠2,∠3=108°.求∠4的度數(shù)。

解:∵∠1=∠2(已知)

∴AB∥CD(                              )

∴∠3+∠4=180°(                        )

∵∠3=108°(已知)

∴∠4=180°-108°=72°

 

【答案】

解:∵∠1=∠2(已知)

∴AB∥CD( 同位角相等,兩直線平行 )

∴∠3+∠4=180°(  兩直線平行,同旁內角互補 )

∵∠3=108°(已知)

∴∠4=180°-108°=72°

【解析】利用平行線的判定定理證出AB∥CD,再利用平行線的性質定理得出∠3+∠4=180°,從而求出∠4的值;

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

根據(jù)提示填空(或填上每步推理的理由)
(1)如圖1,∠1=∠2,∠3=108°,求∠4的度數(shù).
解:∵∠1=∠2(已知)
∴AB∥CD(
同位角相等兩直線平行
同位角相等兩直線平行

∴∠3+∠4=180°(
兩直線平行同旁內角互補
兩直線平行同旁內角互補

∵∠3=108°(已知)
∴∠4=180°-108°=72°
(2)已知:如圖2,∠1=∠2、∠3=∠4,
求證:∠5=∠A.
證明:∵∠1=∠2.(已知)
∠3=∠4,(已知)
又∵∠2=∠3(
對頂角相等
對頂角相等

∴∠1=∠4.(
等量代換
等量代換

DC
DC
AB
AB
內錯角相等兩直線平行
內錯角相等兩直線平行

∴∠5=∠A(
兩直線平行同位角相等
兩直線平行同位角相等

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建邵武市邵中片七年級下學期期中測試數(shù)學試卷(帶解析) 題型:解答題

根據(jù)提示填空(或填上每步推理的理由)
已知:如圖,∠1=∠2、∠3=∠4,求證:∠5=∠A.

證明:∵∠1=∠2.(已知)
∠3=∠4,(已知)
又∵∠2=∠3(            
∴∠1=∠4.(             
∴_______//_______(                
∴∠5=∠A(                           

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆福建邵武市邵中片七年級下學期期中測試數(shù)學試卷(解析版) 題型:解答題

根據(jù)提示填空(或填上每步推理的理由)

已知:如圖,∠1=∠2、∠3=∠4,求證:∠5=∠A.

證明:∵∠1=∠2.(已知)

∠3=∠4,(已知)

又∵∠2=∠3(             

∴∠1=∠4.(              

∴_______//_______(                 

∴∠5=∠A(                            

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

根據(jù)提示填空(或填上每步推理的理由)
(1)如圖1,∠1=∠2,∠3=108°,求∠4的度數(shù).
解:∵∠1=∠2(已知)
∴AB∥CD(______)
∴∠3+∠4=180°(______)
∵∠3=108°(已知)
∴∠4=180°-108°=72°
(2)已知:如圖2,∠1=∠2、∠3=∠4,
求證:∠5=∠A.
證明:∵∠1=∠2.(已知)
∠3=∠4,(已知)
又∵∠2=∠3(______)
∴∠1=∠4.(______)
∴______∥______(______)
∴∠5=∠A(______)

查看答案和解析>>

同步練習冊答案