如圖,點(diǎn)E是等邊△ABC內(nèi)一點(diǎn),且EA=EB,△ABC外一點(diǎn)D滿足BD=AC,且BE平分∠DBC,求∠BDE的度數(shù).(提示:連接CE)

【答案】分析:由已知條件先證明△BCE≌△ACE得到∠BCE=∠ACE=30°,再證明△BDE≌△BCE得到∠BDE=∠BCE=30°.
解答:解:連接CE,
∵△ABC是等邊三角形,
∴AC=BC,
在△BCE與△ACE中,

∴△BCE≌△ACE(SSS),
∴∠BCE=∠ACE=30°
∵BE平分∠DBC,
∴∠DBE=∠CBE,
在△BDE與△BCE中,

∴△BDE≌△BCE,
∴∠BDE=∠BCE=30°.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì);熟練掌握等邊三角形的性質(zhì),會(huì)運(yùn)用全等求解角相等,正確作出輔助線是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,點(diǎn)D是等邊三角形ABC內(nèi)的一點(diǎn),將△BDC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,試畫出旋轉(zhuǎn)后的三角形,并指出圖中的全等圖形以及它們的對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)邊和對(duì)應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),BP=5cm,△PAB繞點(diǎn)B旋轉(zhuǎn)后能與△MCB重合,連接PM,則PM=
5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=a.以O(shè)C為一邊作等邊三角形OCD,連接AC、AD.
(1)當(dāng)a=150°時(shí),試判斷△AOD的形狀,并說明理由;
(2)探究:當(dāng)a為多少度時(shí),△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•清流縣質(zhì)檢)星期天,小明在解答下列題目時(shí)卡殼了.
題目1:如圖①,在△ABC中,AC=BC,∠ACB=90°,O為△ABC內(nèi)的一點(diǎn),OC=1,OA=
3
,OB=
5
.求∠AOC的度數(shù).
小明去請(qǐng)教小穎正在解答下列題目.
題目2:如圖②,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),將△BCO繞C順時(shí)針方向旋轉(zhuǎn)60°得到△ADC,連接OD.
(1)試判斷△COD的形狀,并說明理由;
(2)當(dāng)∠COB=150°時(shí),試判斷△AOD的形狀,并寫出OA、OB、OC三者之間的等量關(guān)系式.
小穎說:“等等,等我做完了,我們一起來看.”小明看完,小穎做完后高興地說:“哈哈,太好了,我會(huì)了.”聰明的同學(xué),你能先解答完題目2,再根據(jù)解答所得到的啟迪來完成題目1嗎?寫出你的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α.將線段OC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得到線段CD,連接OD、AD.
(1)求證:AD=BO;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時(shí)(直接寫出答案),△AOD是等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案