【題目】如圖,在矩形ABCD中,EF經(jīng)過對角線BD的中點O,分別交ADBC于點E,F

1)求證:BOF≌△DOE;

2)若AB4cm,AD5cm,當EFBD時,求四邊形ABFE的面積.

【答案】1)見解析;(210cm2

【解析】

1)利用矩形的性質(zhì)可得:ADBC,進而可證全等;

2)利用全等的性質(zhì)可得:EDFBAECF,可得四邊形ABFE的面積是矩形面積的一半.

1)證明:∵四邊形ABCD是矩形,

ADBC,

∴∠BFO=∠DEO,∠FBO=∠EDO,

又∵OBD中點,

OBOD,

∴△BOF≌△DOEAAS).

2)由(1)可得EDFB.∴AECF

S四邊形ABFES四邊形CDEF

又∵AB4cm,AD5cm

S矩形ABCD20cm2,

S四邊形ABFE10cm2

故答案為(1)見解析;(210cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】訂書機是由推動器、托板、壓形器、底座、定位軸等組成.如圖1是一臺放置在水平桌面上的大型訂書機,將其側(cè)面抽象成如圖2所示的幾何圖形.若壓形器EF的端點E固定于定位軸CD的中點處,在使用過程中,點D和點F隨壓形器及定位軸繞點C旋轉(zhuǎn),COAB于點OCD12cm連接CF,若∠FED45°,∠FCD30°

1)求FC的長;

2)若OC2cm求在使用過程中,當點D落在底座AB上時,請計算CDAB的夾角及點F運動的路線之長.(結(jié)果精確到0.1cm,參考數(shù)據(jù):sin9.6°≈0.17π≈3.14, 1.732

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點DAC延長線上一點,連接BD,過A,垂足為M,交BC于點N

如圖1,若,,求AM的長;

如圖2,點ECA的延長線上,且,連接EN并延長交BD于點F,求證:;

的條件下,當時,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD中,點E、F分別在邊CDAD上,連接BE、BFEF,且有AF+CEEF

1)求(AF+1)(CE+1)的值;

2)探究∠EBF的度數(shù)是否為定值,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】龍蝦狂歡季再度開啟,第屆中國合肥龍蝦節(jié)的主題是“讓你知蝦,也知稻”,稻田小龍蝦養(yǎng)殖技術在合肥周邊的鄉(xiāng)鎮(zhèn)大力推廣,已知每千克小龍蝦養(yǎng)殖成本為元,在整個銷售旺季的天里,銷售單價/千克,與時間(天)之間的函數(shù)關系式為:,日銷售量(千克)與時間第(天)之間的函數(shù)關系如圖所示:

1)求日銷售量與時間的函數(shù)關系式?

2)哪一天的日銷售利潤最大?最大利潤是多少?

3)在實際銷售的前天中,該養(yǎng)殖戶決定銷售千克小龍蝦,就捐贈元給村里的特困戶,在這前天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:若中,其中一個內(nèi)角是另一個內(nèi)角的一半,則稱為“半角三角形”.

1)若為半角三角形,,則其余兩個角的度數(shù)為

2)如圖1,在平行四邊形中,,點在邊上,以為折痕,將向上翻折,點恰好落在邊上的點,若,求證:為半角三角形;

3)如圖2,以的邊為直徑畫圓,與邊交于,與邊交于,已知的面積是面積的倍.

①求證:

②若是半角三角形,,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB,


1)求拋物線的解析式;
2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
3)若點Ex軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①為汽車沿直線運動的速度v(m/s)與時間t(s)(0≤t≤40)之間的函數(shù)圖象.根據(jù)對此圖象的分析、理解,在圖②中畫出描述在這段時間內(nèi)汽車離開出發(fā)點的路程s(m)與時間t(s)之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

求出拋物線的對稱軸方程以及與軸的交點坐標

時,求出拋物線與軸的交點坐標

已知三點構成三角形,當拋物線與三角形的三條邊一共有個交點時,直接寫出的取值范圍.

查看答案和解析>>

同步練習冊答案