(2006•旅順口區(qū))已知拋物線y=x2-4x+1.將此拋物線沿x軸方向向左平移4個(gè)單位長(zhǎng)度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)若直線y=m與這兩條拋物線有且只有四個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=ax2+bx+c(a>0,b<0),并將此拋物線沿x軸方向向左平移-個(gè)單位長(zhǎng)度,試探索問題(2).

【答案】分析:平移的實(shí)質(zhì)可以可作頂點(diǎn)的平移,先將已知拋物線y=x2-4x+1寫成頂點(diǎn)式,再按平移規(guī)律寫出平移后的函數(shù)頂點(diǎn)式.
解答:解:(1)y=x2-4x+1
配方,得y=(x-2)2-3,
向左平移4個(gè)單位,得y=(x+2)2-3
∴平移后得拋物線的解析式為y=x2+4x+1;

(2)由(1)知,兩拋物線的頂點(diǎn)坐標(biāo)為(2,-3),(-2,-3)
,

∴兩拋物線的交點(diǎn)為(0,1)
由圖象知,若直線y=m與兩條拋物線有且只有四個(gè)交點(diǎn)時(shí),
m>-3且m≠1;

(3)由y=ax2+bx+c配方得y=a(x+2+;
向左平移個(gè)單位長(zhǎng)度得到拋物線的解析式為y=a(x-2+;
∴兩拋物線的頂點(diǎn)坐標(biāo)分別為,

得,
∴兩拋物線的交點(diǎn)為(0,c)
由圖象知滿足(2)中條件的m的取值范圍是:
m>且m≠c.
點(diǎn)評(píng):此題主要考查拋物線的平移,直線與拋物線的交點(diǎn)等相關(guān)知識(shí);此題綜合性強(qiáng),難度較大,要求學(xué)生有較好的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•旅順口區(qū))已知拋物線y=x2-4x+1.將此拋物線沿x軸方向向左平移4個(gè)單位長(zhǎng)度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)若直線y=m與這兩條拋物線有且只有四個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=ax2+bx+c(a>0,b<0),并將此拋物線沿x軸方向向左平移-個(gè)單位長(zhǎng)度,試探索問題(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•旅順口區(qū))通過實(shí)驗(yàn)研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時(shí)間的變化而變化的,講課開始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時(shí),圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時(shí),圖象是線段.
(1)當(dāng)0≤x≤10時(shí),求注意力指標(biāo)數(shù)y與時(shí)間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時(shí),注意力的指標(biāo)數(shù)都不低于36?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河南省鄭州市董老師奧數(shù)二模試卷(2)(解析版) 題型:解答題

(2006•旅順口區(qū))通過實(shí)驗(yàn)研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時(shí)間的變化而變化的,講課開始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時(shí),圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時(shí),圖象是線段.
(1)當(dāng)0≤x≤10時(shí),求注意力指標(biāo)數(shù)y與時(shí)間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時(shí),注意力的指標(biāo)數(shù)都不低于36?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年遼寧省大連市旅順口區(qū)中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•旅順口區(qū))通過實(shí)驗(yàn)研究,專家們發(fā)現(xiàn):初中學(xué)生聽課的注意力指標(biāo)數(shù)是隨著老師講課時(shí)間的變化而變化的,講課開始時(shí),學(xué)生的興趣激增,中間有一段時(shí)間的興趣保持平穩(wěn)狀態(tài),隨后開始分散.學(xué)生注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)變化的函數(shù)圖象如圖所示(y越大表示注意力越集中).當(dāng)0≤x≤10時(shí),圖象是拋物線的一部分,當(dāng)10≤x≤20和20≤x≤40時(shí),圖象是線段.
(1)當(dāng)0≤x≤10時(shí),求注意力指標(biāo)數(shù)y與時(shí)間x的函數(shù)關(guān)系式;
(2)一道數(shù)學(xué)綜合題,需要講解24分鐘.問老師能否經(jīng)過適當(dāng)安排,使學(xué)生聽這道題時(shí),注意力的指標(biāo)數(shù)都不低于36?

查看答案和解析>>

同步練習(xí)冊(cè)答案