三角形是由三角形ABC平移得到的,點(diǎn)A(-2,-1)的對應(yīng)點(diǎn)為(1,-3),則點(diǎn)B(1,2)的對應(yīng)點(diǎn)、點(diǎn)C(0,3)的對應(yīng)點(diǎn)的坐標(biāo)分別為

[  ]

A.(3,2)、(4,1)

B.(4,0)、(3,1)

C.(-2,3)、(1,4)

D.(3,0)、(2,-1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,CD⊥AB于D,由下列條件中的某一個就能推出△ABC是直角三角形的是
 
.(把所有正確答案的序號都填寫在橫線上)
①∠ACD=∠B;②∠A:∠B:∠C=4:3:5;③AC•BC=AB•CD;④
CD
AD
=
DB
CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北師大版初中數(shù)學(xué)八年級上3.5它們是怎樣變過來的練習(xí)卷(解析版) 題型:解答題

如圖①,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是BA延長線上的一點(diǎn),AF=AB,

(1)求證:△ABE≌△ADF.

(2)閱讀下列材料:如圖②,把△ABC沿直線平移線段BC的長度,可以變到△ECD的位置;如圖③,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;如圖④,以點(diǎn)A為中心,把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置,像這樣其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

      圖①               圖②                  圖③           圖④

請回答下列問題:

(1)在圖①中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置?

(2)指出圖①中線段BE與DF之間的關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年5月中考數(shù)學(xué)模擬試卷(59)(解析版) 題型:填空題

如圖,△ABC中,CD⊥AB于D,由下列條件中的某一個就能推出△ABC是直角三角形的是    .(把所有正確答案的序號都填寫在橫線上)
①∠ACD=∠B;②∠A:∠B:∠C=4:3:5;③AC•BC=AB•CD;④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年安徽省馬鞍山六中中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

如圖,△ABC中,CD⊥AB于D,由下列條件中的某一個就能推出△ABC是直角三角形的是    .(把所有正確答案的序號都填寫在橫線上)
①∠ACD=∠B;②∠A:∠B:∠C=4:3:5;③AC•BC=AB•CD;④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年安徽省蚌埠市七中高一自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1:等邊△ADE可以看作由等邊△ABC繞頂點(diǎn)A經(jīng)過旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的△ABD和△ACE的關(guān)系,上述變換也可以理解為圖形是由△ABD繞頂點(diǎn)A旋轉(zhuǎn)60°形成的.于是我們得到一個結(jié)論:如果兩個正三角形存在著公共頂點(diǎn),則該圖形可以看成是由一個三角形繞著該頂點(diǎn)旋轉(zhuǎn)60°形成的.
①利用上述結(jié)論解決問題:如圖2,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BFC都是等邊三角形,求四邊形ADFE的面積;
②圖3中,△ABC∽△ADE,AB=AC,∠BAC=∠DAE=θ,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫出結(jié)論即可)

查看答案和解析>>

同步練習(xí)冊答案