【題目】某校九年級的小紅同學(xué),在自己家附近進行測量一座樓房高度的實踐活動.如圖,她在山坡坡腳A出測得這座樓房的樓頂B點的仰角為60°,沿山坡往上走到C處再測得B點的仰角為45°.已知OA=200m,此山坡的坡比i=,且O、A、D在同一條直線上.
求:(1)樓房OB的高度;
(2)小紅在山坡上走過的距離AC.(計算過程和結(jié)果均不取近似值)
【答案】(1)200 m;(2)m.
【解析】試題分析:(1)由在Rt△ABO中,∠BAO=60°,OA=200,則可得tan60°=,則利用正切函數(shù)的知識即可求得答案;
(2)首先過點C作CE⊥BO于E,CH⊥OD于H,由題意可知i=,然后設(shè)CH=x,AH=2x,在Rt△BEC中,∠BCE=45°,利用直角三角形的性質(zhì),即可得方程:200﹣x=200+2x,由在Rt△ACH中,利用勾股定理即可求得答案.
解:(1)在Rt△ABO中,∠BAO=60°,OA=200.
∵tan60°=,
即,
∴OB=OA=200(m).
(2)如圖,過點C作CE⊥BO于E,CH⊥OD于H.
則OE=CH,EC=OH.
根據(jù)題意,知i=,
可設(shè)CH=x,AH=2x. …
在Rt△BEC中,∠BCE=45°,
∴BE=CE,
即OB﹣OE=OA+AH.
∴200﹣x=200+2x.
解得x=. …
在Rt△ACH中,
∵AC2=AH2+CH2,
∴AC2=(2x)2+x2=5x2.
∴AC=x=(m).
答:高樓OB的高度為200m,小玲在山坡上走過的距離AC為 m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點 A,一次函數(shù) y=kx+b 的圖象經(jīng)過點 B(0,﹣1),與x 軸 以及 y=x+1 的圖象分別交于點 C、D,且點 D 的坐標(biāo)為(1,n),
(1)則n= ,k= ,b= ;
(2)函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是 ;
(3)求四邊形 AOCD 的面積;
(4)在 x軸上是否存在點 P,使得以點 P,C,D 為頂點的三角形是直角三角形?若存在求出點 P 的坐標(biāo); 若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,A,B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B兩點間的距離為:AB=我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖2,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA2=|x﹣0|2+|y﹣0|2,當(dāng)⊙O的半徑為r時,⊙O的方程可寫為:x2+y2=r2.
問題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫為 .
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點O,P點坐標(biāo)為(0,6),A是⊙P上一點,連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.
①證明:AB是⊙P的切線;
②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標(biāo),并寫出以Q為圓心,以OQ為半徑的⊙Q的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算中,正確的是( 。
A. a2a4=a8 B. (a3)2=a5 C. (3ax)2=9a2x2 D. a2+a2=a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各項是真命題的是( )
A. 從直線外一點到已知直線的垂線段叫做這點到直線的距離
B. 過一點有且只有一條直線與已知直線平行
C. 有公共頂點且相等的兩個角是對頂角
D. 同一平面內(nèi),不重合的兩條直線的位置關(guān)系只有相交和平行兩種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個樣本有50個數(shù)據(jù),分成三個組.已知第一、二組數(shù)據(jù)頻率和為a,第二、三組數(shù)據(jù)頻率和為b,則第二組的頻率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(3,2)關(guān)于x軸的對稱點為 ( )
A. (-3,一2) B. (3,-2) C. (-3,2) D. (2,-3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com