如圖所示,已知點(diǎn)E、F分別是△ABC中AC、AB邊的中點(diǎn),BE、CF相交于點(diǎn)G,F(xiàn)G=2,則CF的長為( )

A.4
B.4.5
C.5
D.6
【答案】分析:根據(jù)已知利用相似三角形的判定可得到△EFG∽△BCG,根據(jù)相似比可求得CG的長,從而不難求得CF的長.
解答:解:∵點(diǎn)E、F分別是△ABC中AC、AB邊的中點(diǎn)
∴EF=BC,EF∥BC
∴△EFG∽△BCG,且相似比為1:2
∴CG=2FG=4
∴CF=FG+CG=2+4=6.
故選D.
點(diǎn)評:此題主要考查三角形的中位線的定理和相似三角形的判定方法的掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知點(diǎn)E、F分別是△ABC中AC、AB邊的中點(diǎn),BE、CF相交于點(diǎn)G,F(xiàn)G=2,則CF的長為( 。
A、4B、4.5C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖所示,已知點(diǎn)E、F分別是△ABC中AC、AB邊的中點(diǎn),BE、CF相交于點(diǎn)G,F(xiàn)G=2,則CF的長為
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示,已知點(diǎn)0是∠EPF的平分線上的點(diǎn),以點(diǎn)0為圓心的圓與角的兩邊分別交于A,B和C,D.求證:AB=CD.
變式:(1)若角的頂點(diǎn)P在圓上,如圖②所示,上述結(jié)論成立嗎?請加以說明;
(2)若角的頂點(diǎn)P在圓內(nèi),如圖③所示,上述結(jié)論成立嗎?請加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
m2x
和一次函數(shù)y=-2x-1,其中依次函數(shù)的圖象經(jīng)過(a,b),(a+1,b+m)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖所示,已知點(diǎn)A在第二象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,試判斷在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知點(diǎn)A(-3,4)和B(-2,1),試在y軸上求一點(diǎn)P,使PA+PB的值最小,并求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案