(2002•泰州)Rt△ABC中,∠C=90°,a:b=3:4,運(yùn)用計算器計算,∠A的度數(shù)(精確到1°)( )
A.30°
B.37°
C.38°
D.39°
【答案】分析:根據(jù)題中所給的條件,在直角三角形中解題,根據(jù)角的正弦值與三角形邊的關(guān)系,可求出各邊的長,然后求出∠A.
解答:解:∵a:b=3:4,
∴設(shè)a=3x,b=4x,
由勾股定理知,c=5x.
∴sinA=a:c=3:5=0.6,
運(yùn)用計算器得,∠A=37°.
故選B.
點評:本題考查在直角三角形中解題,根據(jù)角的正弦值求出三角形的角度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2002•泰州)等腰梯形ABCD中,AD∥BC,AB=CD,面積S=9,建立如圖所示的直角坐標(biāo)系,已知A(1,0)、B(0,3).
(1)求C、D兩點坐標(biāo);
(2)取點E(0,1),連接DE并延長交AB于F,求證:DF⊥AB;
(3)將梯形ABCD繞A點旋轉(zhuǎn)180°到AB′C′D′,求對稱軸平行于y軸,且經(jīng)過A、B′、C′三點的拋物線的解析式;
(4)是否存在這樣的直線,滿足以下條件:①平行于x軸,②與(3)中的拋物線有兩個交點,且這兩交點和(3)中的拋物線的頂點恰是一個等邊三角形的三個頂點?若存在,求出這個等邊三角形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(2002•泰州)已知一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,且與反比例函數(shù)的圖象在第一象限交于點C(4,n),CD⊥x軸于D.
(1)求m、n的值,并在給定的直角坐標(biāo)系中作出一次函數(shù)的圖象;
(2)如果點P、Q分別從A、C兩點同時出發(fā),以相同的速度沿線段AD、CA向D、A運(yùn)動,設(shè)AP=k.
①k為何值時,以A、P、Q為頂點的三角形與△AOB相似?
②k為何值時,△APQ的面積取得最大值并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•泰州)等腰梯形ABCD中,AD∥BC,AB=CD,面積S=9,建立如圖所示的直角坐標(biāo)系,已知A(1,0)、B(0,3).
(1)求C、D兩點坐標(biāo);
(2)取點E(0,1),連接DE并延長交AB于F,求證:DF⊥AB;
(3)將梯形ABCD繞A點旋轉(zhuǎn)180°到AB′C′D′,求對稱軸平行于y軸,且經(jīng)過A、B′、C′三點的拋物線的解析式;
(4)是否存在這樣的直線,滿足以下條件:①平行于x軸,②與(3)中的拋物線有兩個交點,且這兩交點和(3)中的拋物線的頂點恰是一個等邊三角形的三個頂點?若存在,求出這個等邊三角形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•泰州)已知一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,且與反比例函數(shù)的圖象在第一象限交于點C(4,n),CD⊥x軸于D.
(1)求m、n的值,并在給定的直角坐標(biāo)系中作出一次函數(shù)的圖象;
(2)如果點P、Q分別從A、C兩點同時出發(fā),以相同的速度沿線段AD、CA向D、A運(yùn)動,設(shè)AP=k.
①k為何值時,以A、P、Q為頂點的三角形與△AOB相似?
②k為何值時,△APQ的面積取得最大值并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(04)(解析版) 題型:填空題

(2002•泰州)半徑分別為5和3的兩圓,圓心距為4,則這兩圓公切線的條數(shù)為   

查看答案和解析>>

同步練習(xí)冊答案