【題目】如圖,在平面直角坐標(biāo)系xOy中,ABCO的頂點(diǎn)A,B坐標(biāo)分別是(6,0),(0,4).動(dòng)點(diǎn)P在直線OD解析式為y=x上運(yùn)動(dòng).
(1)若反比例函數(shù)y=圖象過C點(diǎn),則m=_____.
(2)證明:OD⊥AB;
(3)當(dāng)以點(diǎn)P為圓心、PB長為半徑的⊙P隨點(diǎn)P運(yùn)動(dòng)⊙P與ABCO的邊所在直線相切時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)﹣24;(2)見解析;(3)滿足條件的P的坐標(biāo)為(0,0)或(,2)或(6﹣2,9﹣3).
【解析】
(1)先求出C點(diǎn)的坐標(biāo),根據(jù)反比例函數(shù)y=圖象過C點(diǎn),代入即可解得m的值;
(2)先求出D點(diǎn)的坐標(biāo),D(,),根據(jù)OD2+BD2=OB2,構(gòu)建直角三角形的三邊滿足勾股定理,可得OD⊥AB;
(3)本問分4種情況進(jìn)行討論,分別是①當(dāng)⊙P與BC相切時(shí);②當(dāng)⊙P與OC相切時(shí);③當(dāng)⊙P與OA相切時(shí);④當(dāng)⊙P與AB相切時(shí),可根據(jù)這4種情況求出點(diǎn)P的坐標(biāo).
(1)解:∵A(6,0),B(0,4),
∴OA=6,OB=4,
∵四邊形OABC是平行四邊形,
∴BC=OA=6,
∴C(﹣6,4).
∵反比例函數(shù)y=圖象過C點(diǎn),
∴m=﹣24,
故答案為﹣24.
(2)證明:∵A(6,0),B(0,4),
∴直線AB的解析式為y=﹣x+4,
由解得,
∴D(,),
∴BD2=()2+(4﹣)2=,OD2=()2+()2=,
∵OD2+BD2==16=OB2,
∴∠ODB=90°,
∴OD⊥AB.
(3)解:∵OP⊥AB,AB∥OC
∴OP⊥OC,設(shè)P(x,x)
①當(dāng)⊙P與BC相切時(shí),∵動(dòng)點(diǎn)P在直線y=x上,
∴P與O重合,此時(shí)圓心P到BC的距離為OB,
∴P(0,0).
②如圖1中,當(dāng)⊙P與OC相切時(shí),則OP=BP,△OPB是等腰三角形,作PE⊥y軸于E,則EB=EO,易知P的縱坐標(biāo)為2,可得P(,2).
③如圖2中,當(dāng)⊙P與OA相切時(shí),則點(diǎn)P到點(diǎn)B的距離與點(diǎn)P到x軸的距離相等,可得,
解得x=6+2或6﹣2,
∵x=6=2>OA,
∴⊙P不會(huì)與OA相切,
∴x=6=2不合題意,
∴P(6﹣2,9﹣3).
④如圖3中,當(dāng)⊙P與AB相切時(shí),設(shè)線段AB與直線OP的交點(diǎn)為G,此時(shí)PB=PG,
∵OP⊥AB,
∴∠BGP=∠PBG=90°不成立,
∴此種情形,不存在P.
綜上所述,滿足條件的P的坐標(biāo)為(0,0)或(,2)或(6﹣2,9﹣3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:
若,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.
例如:點(diǎn)(1,2)的“可控變點(diǎn)”為點(diǎn)(1,2),點(diǎn)(﹣1,3)的“可控變點(diǎn)”為點(diǎn)(﹣1,﹣3).
(1)點(diǎn)(﹣5,﹣2)的“可控變點(diǎn)”坐標(biāo)為 ;
(2)若點(diǎn)P在函數(shù)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′是7,求“可控變點(diǎn)”Q的橫坐標(biāo);
(3)若點(diǎn)P在函數(shù)()的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′ 的取值范圍是,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O ,AD、BC的延長線相交于點(diǎn)E,AB、DC的延長線相交于點(diǎn)F.
(1)若∠E=500, ∠F=400,求∠A的度數(shù).
(2)探究∠E、∠F、∠A的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)假日期間向、某商場組織游戲,主持人請(qǐng)三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對(duì)應(yīng)的是a,b,若主持人分別從三位家長和三位孩予中各選一人參加游戲.
若已選中家長A,則恰好選中自己孩子的概率是______.
請(qǐng)用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價(jià)元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價(jià)部門規(guī)定:這種電子產(chǎn)品銷售單價(jià)不得超過每件80元,那么,當(dāng)銷售單價(jià)x定為每件多少元時(shí),廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點(diǎn)F,過點(diǎn)B作BG∥AD交⊙O于點(diǎn)G,在AB邊上取一點(diǎn)H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國務(wù)院辦公廳在2015年3月16日發(fā)布了《中國足球發(fā)展改革總體方案》,這是中國足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了“足球在身邊”知識(shí)競賽,各類獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎(jiǎng)的學(xué)生人數(shù);
(2)在本次知識(shí)競賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場足球友誼賽,請(qǐng)用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com