【題目】問題背景:在△ABC中,AB、BC、AC三邊的長分別為、、,求此三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上: .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.如果△ABC三邊的長分別a、a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.
【答案】(1)3.5;(2)見解析;(3)3a2
【解析】
(1)利用△ABC所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解;
(2)分別找到A、B、C關于直線EF的對稱點MNG,順次連接各點即可;
(3)先作出以a、2a為直角邊的三角形的斜邊,再根據(jù)勾股定理和網(wǎng)格結構作出a、a的長度,然后順次連接即可;再根據(jù)三角形所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.
(1)△ABC的面積=3×3-×1×2×1×3×2×3=9-1--3=9-5.5=3.5;
故答案為:3.5;
(2)△MNG如圖所示:
(3)△ABC如圖所示,
△ABC的面積=2a·4a-×2a·a-×2a·2a-×4a·a=8a2-a2-2a2-2a2=3a2
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線y=3x+3與x軸交于C點,與y軸交于A點,B點在x軸上,△OAB是等腰直角三角形.
(1)求過A、B、C三點的拋物線的解析式;
(2)若直線CD∥AB交拋物線于D點,求D點的坐標;
(3)若P點是拋物線上的動點,且在第一象限,那么△PAB是否有最大面積?若有,求出此時P點的坐標和△PAB的最大面積;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用直尺和圓規(guī)畫一個角等于已知角,是運用了“全等三角形的對應角相等”這一性質,其全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的語言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長為多少寸?”請你補全示意圖,并求出AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知y是x的一次函數(shù),且當x=0時,y=﹣4;且圖象通過點(1,﹣2)
(1)求這個一次函數(shù)的解析式;
(2)判斷點(a,2a﹣4)是否在該函數(shù)圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線經(jīng)過第一象限內一點A,且OA=4過點A作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉60°得到△CBD,則點C的坐標為( )
A. (,2) B. (,1)
C. (-2,) D. (-1,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應用.解題的關鍵是從圖中得到關鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標.
【題型】解答題
【結束】
24
【題目】閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,P是第一象限角平分線上的一點,且P點的橫坐標為3.把一塊三角板的直角頂點固定在點P處,將此三角板繞點P旋轉,在旋轉的過程中設一直角邊與x軸交于點E,另一直角邊與y軸交于點F,若△POE為等腰三角形,則點F的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級舉行英語演講比賽,購買A,B兩種筆記本作為獎品,這兩種筆記本的單價分別是12元和8元.根據(jù)比賽設獎情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設買A筆記本n本,買兩種筆記本的總費為w元.
(1)寫出w(元)關于n(本)的函數(shù)關系式,并求出自變量n的取值范圍;
(2)購買這兩種筆記本各多少時,費用最少?最少的費用是多少元?
(3)商店為了促銷,決定僅對A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價不變.問購買這兩種筆記本各多少本時花費最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com