如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE
1.求證:AE是⊙O的切線
2.若∠DBC=30°,DE=1cm,求BD的長(zhǎng)。
1.連接AO,(1分)∵AO=OD ∴∠OAD=∠ODA=∠BDE ∴OA∥DE (1分)
又∵AE⊥CD∴∠OAE=90°∴AE是⊙O的切線 (1分)
2.若∠DBC=30°則∠BDC=∠BDA=∠ADE=60°(1分)
又∵DE=1cm,∴AD=2cm,(1分) ∴BD=4 cm (1分)
【解析】(1)連接OA,根據(jù)角之間的互余關(guān)系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切線;
(2)根據(jù)圓周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com