【題目】如圖,點(diǎn)E在以AB為直徑的⊙O上,點(diǎn)C是 的中點(diǎn),過(guò)點(diǎn)C作CD垂直于AE,交AE的延長(zhǎng)線于點(diǎn)D,連接BE交AC于點(diǎn)F.
(1)求證:CD是⊙O的切線;
(2)若cos∠CAD= ,BF=15,求AC的長(zhǎng).
【答案】
(1)證明:連接OC,如圖1所示.
∵點(diǎn)C是 的中點(diǎn),
∴ = ,
∴OC⊥BE.
∵AB是⊙O的直徑,
∴AD⊥BE,
∴AD∥OC.
∵AD⊥CD,
∴OC⊥CD,
∴CD是⊙O的切線.
(2)解:過(guò)點(diǎn)O作OM⊥AC于點(diǎn)M,如圖2所示.
∵點(diǎn)C是 的中點(diǎn),
∴ = ,∠BAC=∠CAE,
∴ = .
∵cos∠CAD= ,
∴ = ,
∴AB= BF=20.
在Rt△AOM中,∠AMO=90°,AO= AB=10,cos∠OAM=cos∠CAD= ,
∴AM=AOcos∠OAM=8,
∴AC=2AM=16.
【解析】(1)連接OC,由點(diǎn)C是 的中點(diǎn)利用垂徑定理可得出OC⊥BE,由AB是⊙O的直徑可得出AD⊥BE,進(jìn)而可得出AD∥OC,再根據(jù)AD⊥CD可得出OC⊥CD,由此即可證出CD是⊙O的切線.(2)過(guò)點(diǎn)O作OM⊥AC于點(diǎn)M,由點(diǎn)C是 的中點(diǎn)利用圓周角定理可得出∠BAC=∠CAE,根據(jù)角平分線的定理結(jié)合cos∠CAD= 可求出AB的長(zhǎng)度,在Rt△AOM中,通過(guò)解直角三角形可求出AM的長(zhǎng)度,再根據(jù)垂徑定理即可得出AC的長(zhǎng)度.
【考點(diǎn)精析】本題主要考查了解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)A,B,C,已知點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B坐標(biāo)為(1,0),點(diǎn)C在y軸的正半軸,且∠CAB=30°.
(1)求拋物線的函數(shù)解析式;
(2)若直線l:y= x+m從點(diǎn)C開始沿y軸向下平移,分別交x軸、y軸于點(diǎn)D、E.
①當(dāng)m>0時(shí),在線段AC上否存在點(diǎn)P,使得點(diǎn)P,D,E構(gòu)成等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②以動(dòng)直線l為對(duì)稱軸,線段AC關(guān)于直線l的對(duì)稱線段A′C′與二次函數(shù)圖象有交點(diǎn),請(qǐng)直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,E,F(xiàn)分別是BC,AC的中點(diǎn),以AC為斜邊作Rt△ADC,若∠CAD=∠CAB=45°,則下列結(jié)論不正確的是( )
A.∠ECD=112.5°
B.DE平分∠FDC
C.∠DEC=30°
D.AB= CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有四張背面完全相同的紙牌A、B、C、D,其正面分別畫有四個(gè)不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機(jī)摸出一張,求摸出的牌面圖形是中心對(duì)稱圖形的概率;
(2)小明和小亮約定做一個(gè)游戲,其規(guī)則為:先由小明隨機(jī)摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機(jī)摸出一張,若摸出的兩張牌面圖形都是軸對(duì)稱圖形小明獲勝,否則小亮獲勝,這個(gè)游戲公平嗎?請(qǐng)用列表法(或樹狀圖)說(shuō)明理由(紙牌用A、B、C、D表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D,E分別是AB,AC的中點(diǎn),連接DE并延長(zhǎng)到點(diǎn)F,使EF=ED,連接CF.
(1)四邊形DBCF是平行四邊形嗎?說(shuō)明理由;
(2)DE與BC有什么樣的位置關(guān)系和數(shù)量關(guān)系?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)計(jì)算:(﹣1)3÷(﹣5)2×(﹣)﹣|0.8﹣1|;
(2)計(jì)算:(1+﹣2.75)×(﹣24)+(﹣1)2011﹣|﹣2|;
(3)先化簡(jiǎn),再求值,已知|x+2|+(y﹣)2=0,求3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】①下午 2 點(diǎn) 10 分時(shí),鐘表的時(shí)針和分針?biāo)射J角是________;
②如圖,射線 OC,OD 在∠AOB 的內(nèi)部,射線 OM,ON 分別平分∠AOD,∠BOC, 且∠BON=50°,∠AOM=40°,∠COD=30°,則∠AOB 的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)5﹣(﹣3)+(﹣2)﹣1;
(2)2×(﹣)÷(﹣3);
(3)﹣5×[1﹣(0.5+ )÷];
(4)20×(﹣)+4×(﹣)+2×(﹣);
(5)﹣14-()÷(﹣)×[﹣2﹣(﹣3)2]﹣(﹣0.52).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上,點(diǎn) A 的初始位置表示的數(shù)為 1,現(xiàn)點(diǎn) A 做如下移動(dòng):第 1 次點(diǎn) A 向左移動(dòng) 3 個(gè)單位長(zhǎng)度至點(diǎn) A1,第 2 次從點(diǎn) A1 向右移動(dòng) 6 個(gè)單位長(zhǎng)度至點(diǎn) A2,第 3 次從點(diǎn) A2 向左移動(dòng) 9 個(gè)單位長(zhǎng)度至點(diǎn) A3,…,按照這種移動(dòng)方式進(jìn)行下去,點(diǎn) A4 表示的數(shù),是__________ ,如果點(diǎn) An 與原點(diǎn)的距離不小于 20, 那么 n 的最小值是________________ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com