已知,如圖①,∠MON=60°,點A,B為射線OM,ON上的動點(點A,B不與點O重合),且AB=,在∠MON的內(nèi)部、△AOB的外部有一點P,且AP=BP,∠APB=120°.
(1)求AP的長;
(2)求證:點P在∠MON的平分線上;
(3) 如圖②,點C,D,E,F分別是四邊形AOBP的邊AO,OB,BP,PA的中點,連接CD,DE,EF,FC,OP.
①當AB⊥OP時,請直接寫出四邊形CDEF的周長的值;
②若四邊形CDEF的周長用t表示,請直接寫出t的取值范圍.
解: (1) 過點P作PQ⊥AB于點Q ∵PA=PB, ∠APB=120° AB=4
∴AQ=AB=×4=2 ∠APQ= ∠APB=×120°=60°在Rt△APQ中, sin∠APQ=∴AP= =sin60°=4
(2) 過點P分別作PS⊥OM于點S, PT⊥ON于點T∴∠OSP=∠OTP=90° 在四邊形OSPT中,∠SPT=360°-∠OSP-∠SOT-∠OTP=360°-90°-60°-90°=120°
∴∠APB=∠SPT=120° ∴∠APS=∠BPT
又∵∠ASP=∠BTP=90° AP=BP
∴△APS≌△BPT ∴PS=PT
∴點P在∠MON的平分線上
(3) ①8+4 ②4+4<t≤8+4
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
4 | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源:2012-2013學年上海市閘北區(qū)中考一模數(shù)學試卷(解析版) 題型:解答題
(本題滿分14分 第(1)小題4分,第(2)小題4分,第(3)小題6分)
已知:如圖,在△ABC中,AB=AC=15, cos∠A=.點M在AB邊上,AM=2MB,點P是邊AC上的一個動點,設(shè)PA=x.
(1)求底邊BC的長;
(2)若點O是BC的中點,聯(lián)接MP、MO、OP,設(shè)四邊形AMOP的面積是y,求y關(guān)于x的函數(shù)關(guān)系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com