如圖所示,已知△ABC是等邊三角形,點D、B、C、E在同一條直線上,且∠DAE=120°.
(1)圖中有相似三角形______對;
(2)探究DB、BC、CE之間的關系,并說明理由.

解:(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠BAC=60°.
∴∠D+∠DAB=60°,∠E+∠CAE=60°.
∵∠DAE=120°,
∴∠DAB+∠EAC=60°.
∴∠D=∠CAE,∠E=∠DAB.
∵∠D=∠D,∠E=∠E,
∴△DAE∽△DBA∽△ACE.
∴相似三角形共有3對.

(2)∵△DBA∽△ACE,
∴DB:AC=AB:CE.
∵AB=AC=BC,
∴BC2=DB•CE.
分析:(1)根據(jù)相似三角形的判定及已知可得到題中存在的相似三角形;
(2)根據(jù)相似三角形的對應邊成比例及已知,即可求得DB、BC、CE之間的關系.
點評:此題考查了相似三角形的判定和性質:
①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,已知AB∥CD,EF平分∠CEG,∠1=80°,則∠2的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖所示,已知AB∥CD,分別探索下列四個圖形中∠P與∠A,∠C的關系.要求:(1)、(2)直接寫出結論,(3)、(4)寫出結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知AB為圓O的直徑,AC為弦,OD∥BC交AC于D,OD=2cm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知AB=AC,BD⊥AC,試說明∠BAC=2∠CBD.

查看答案和解析>>

同步練習冊答案