如圖,已知A(0,1)、D(4,3),P是以AD為對角線的矩形ABDC內(nèi)部(不在各邊上)的一個動點,點C在y軸上,拋物線y=ax2+bx+1以P為頂點.
(1)能否判斷拋物線y=ax2+bx+1的開口方向?請說明理由.
(2)設(shè)拋物線y=ax2+bx+1與x軸有交點F、E(F在E的左側(cè)),△EAO與△FAO的面積之差為3,且這條拋物線與線段AD有一個交點的橫坐標(biāo)為
7
2
,這時能確定a、b的值嗎?若能,請求出a、b的值;若不能,請確定a、b的取值范圍.(本題的圖形僅供分析參考用)
(1)能判斷拋物線開口向下.
∵y=ax2+bx+1經(jīng)過點A(0,1),
∴點P的位置高于點A,說明點P不是拋物線的最低點,
∴點P是拋物線的最高點.
∴拋物線y=ax2+bx+1的開口向下.

(2)如圖,設(shè)拋物線與x軸的交點坐標(biāo)為F(x1,0)、E(x2,0),
則x1<0,x2>0
S△AEO=
1
2
OE•OA=
1
2
x2;
S△AFO=
1
2
OF•OA=-
1
2
x1
∵S△AEO-S△AFO=3
1
2
x2-(-
1
2
x1)=3,即x1+x2=6
∵x1+x2=
-b+
b2-4a
2a
+
-b-
b2-4a
2a
=-
b
a

-
b
a
=6,即b=-6a①
另一方面,設(shè)直線AD的解析式為y=kx+m,
并把點A(0,1)、D(4,3)的坐標(biāo)代入解析式得
1=0k+m
3=4k+m
,解得
k=
1
2
m=1
,∴y=
1
2
x+1

由于拋物線與線段AD有一個交點的橫坐標(biāo)為
7
2
,所以縱坐標(biāo)=
1
2
×
7
2
+1=
11
4

把點(
7
2
,
11
4
)的坐標(biāo)代入y=ax2+bx+1,
整理得49a+14b=7②
解由①②組成的方程組得a=-
1
5
b=
6
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中給定以下五個點A(-3,0),B(-1,4),C(0,3),D(
1
2
,
7
4
),E(1,0).
(1)請從五點中任選三點,求一條以平行于y軸的直線為對稱軸的拋物線的解析式;
(2)求該拋物線的頂點坐標(biāo)和對稱軸,并畫出草圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設(shè)△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當(dāng)t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點O是坐標(biāo)原點,點P(m,-1)(m>0).連接OP,將線段OP繞點O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點M是拋物線y=ax2+bx+c的頂點.
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點A(1,0),若拋物線y=ax2+bx+c與y軸交于點B,直線AB與拋物線y=ax2+bx+c有且只有一個交點,請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
4
5
x2+
24
5
x-4與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
(1)求點A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo);若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點D作DE⊥DC,交OA于點E.
(1)求過點E、D、C的拋物線的解析式;
(2)將∠EDC繞點D按順時針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標(biāo)為
6
5
,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點G,在位于第一象限內(nèi)的該拋物線上是否存在點Q,使得直線GQ與AB的交點P與點C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點A、C分別在y軸、x軸正半軸上,點P在AB上,PA=1,AO=2.經(jīng)過原點的拋物線y=mx2-x+n的對稱軸是直線x=2.
(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長的三角板的直角頂點放在P點處,兩直角邊恰好分別經(jīng)過點O和C.現(xiàn)在利用圖2進行如下探究:
①將三角板從圖1中的位置開始,繞點P順時針旋轉(zhuǎn),兩直角邊分別交OA、OC于點E、F,當(dāng)點E和點A重合時停止旋轉(zhuǎn).請你觀察、猜想,在這個過程中,
PE
PF
的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出
PE
PF
的值.
②設(shè)(1)中的拋物線與x軸的另一個交點為D,頂點為M,在①的旋轉(zhuǎn)過程中,是否存在點F,使△DMF為等腰三角形?若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(經(jīng)過原點)與x軸相交于N點,直線y=kx+4與坐標(biāo)軸分別相交于A、D兩點,與拋物線相交于B(1,m)和C(2,2)兩點.
(1)求直線與拋物線的表達式;
(2)求證:C點是△AOD的外心;
(3)若(1)中的拋物線,在x軸上方的部分,有一動點P(x,y),設(shè)∠PON=α.當(dāng)sinα為何值時,△PON的面積有最大值?
(4)若P點保持(3)中運動路線,是否存在△PON,使得其面積等于△OCN面積的
9
16
?若存在,求出動點P的位置;若不存在,請說出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=ax2的圖象過(2,1),則二次函數(shù)的表達式為______.

查看答案和解析>>

同步練習(xí)冊答案