【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點(diǎn),過(guò)點(diǎn)A作AD⊥BP于點(diǎn)D,交直線BC于點(diǎn)Q.
(1)如圖1,當(dāng)P在線段AC上時(shí),求證:BP=AQ;
(2)如圖2,當(dāng)P在線段CA的延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立? (填“成立”或“不成立”)
(3)在(2)的條件下,當(dāng)∠DBA= 度時(shí),存在AQ=2BD,說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)(2)成立,理由見(jiàn)解析;(3)當(dāng)∠DBA=22.5°時(shí),存在AQ=2BD,理由見(jiàn)解析.
【解析】試題分析:(1)首先根據(jù)內(nèi)角和定理得出∠DAP=∠CBP,進(jìn)而得出
△ACQ≌△BCP即可得出答案;
(2)延長(zhǎng)BA交PQ于H,由于 得到 推出△AQC≌△BPC(ASA),即可得出結(jié)論;
(3)當(dāng)時(shí),存在根據(jù)等腰三角形的性質(zhì)得到BP=2BD,通過(guò)△PBC≌△ACQ,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.
試題解析:
(1)證明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,
∴∠DAP=∠CBP,
在△ACQ和△BCP中
∴△ACQ≌△BCP(ASA),
∴BP=AQ
(2)成立,
理由:延長(zhǎng)BA交PQ于H,
∠AQC=∠BQD,
∴∠CAQ=∠DBQ,
在△AQC和△BPC中,
∴△AQC≌△BPC(ASA),
∴AQ=BP,
故答案為:成立;
(3)22.5°,
當(dāng)∠DBA=22.5°時(shí),存在AQ=2BD,
理由:∵∠BAC=∠DBA+∠APB=45°,
∴∠PBA=∠APB=22.5°,
∴AP=AB,
∵AD⊥BP,
∴BP=2BD,
在△PBC與△QAC中,
∴△PBC≌△ACQ,
∴AQ=PB,
∴AQ=2BD.
故答案為:22.5°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1.紙上有5個(gè)邊長(zhǎng)為1的小正方形組成的紙片,可把它剪拼成一個(gè)正方形(圖2)
(圖3)
拼成的正方體的面積與邊長(zhǎng)分別是多少?
你能把這十個(gè)小正方體組成的圖形紙(圖3),剪拼成一個(gè)大正方形嗎?若能,則請(qǐng)畫(huà)出剪拼成的大正方形,并求出其邊長(zhǎng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每一個(gè)小方格的邊長(zhǎng)為1個(gè)單位,試解答下列問(wèn)題:
的頂點(diǎn)都在方格紙的格點(diǎn)上,先將向右平移2個(gè)單位,再向上平移3個(gè)單位,得到,其中點(diǎn)、、分別是A,B、C的對(duì)應(yīng)點(diǎn),試畫(huà)出.
連接、,則線段、的位置關(guān)系為______,線段、的數(shù)量關(guān)系為______;
平移過(guò)程中,線段AB掃過(guò)部分的面積為______平方單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED的外部時(shí),則∠A與∠1和∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )
A. 2∠A=∠1﹣∠2 B. 3∠A=2(∠1﹣∠2)
C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分線.下列說(shuō)法正確的是( 。
①BE=CF ②AE是∠DAB的角平分線 ③∠DAE+∠DCF=120°.
A. ① B. ①② C. ①②③ D. 都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CD交BC于E,O是AC的中點(diǎn),AB=,AD=2,BC=3,下列結(jié)論:
①∠CAE=30;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正確的是()
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長(zhǎng)線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2 ,sin∠BCP= ,求點(diǎn)B到AC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考察某種大麥細(xì)長(zhǎng)的分布情況,在一塊試驗(yàn)田里抽取了部分麥穗.測(cè)得它們的長(zhǎng)度,數(shù)據(jù)整理后的頻數(shù)分布表及頻數(shù)分直方圖如下.根據(jù)以下信息,解答下列問(wèn)題:
穗長(zhǎng)x | 頻數(shù) |
4.0≤x<4.3 | 1 |
4.3≤x<4.6 | 1 |
4.6≤x<4.9 | 2 |
4.9≤x<5.2 | 5 |
5.2≤x<5.5 | 11 |
5.5≤x<5.8 | 15 |
5.8≤x<6.1 | 28 |
6.1≤x<6.4 | 13 |
6.4≤x<6.7 | 11 |
6.7≤x<7.0 | 10 |
7.0≤x<7.3 | 2 |
7.3≤x<7.6 | 1 |
(Ⅰ)補(bǔ)全直方圖;
(Ⅱ)共抽取了麥穗 棵;
(Ⅲ)頻數(shù)分布表的組距是 ,組數(shù)是 ;
(Ⅳ)麥穗長(zhǎng)度在5.8≤x<6.1范圍內(nèi)麥穗有多少棵?占抽取麥穗的百分之幾?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com