(2005•陜西)如圖,在一個由4×4個小正方形組成的正方形網(wǎng)格中,陰影部分面積與正方形ABCD的面積比是( )

A.5:8
B.3:4
C.9:16
D.1:2
【答案】分析:觀察圖象利用割補法可得陰影部分的面積是10個小正方形組成的,易得陰影部分面積與正方形ABCD的面積比.或根據(jù)相似多邊形面積的比等于相似比的平方來計算.
解答:解:方法1:利用割補法可看出陰影部分的面積是10個小正方形組成的,
所以陰影部分面積與正方形ABCD的面積比是10:16=5:8;
方法2:=,(2:42=10:16=5:8.
故選A.
點評:在有網(wǎng)格的圖中,一般是利用割補法把不規(guī)則的圖形整理成規(guī)則的圖形,通過數(shù)方格的形式可得出陰影部分的面積,從而求出面積比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,⊙C過原點O,交x軸于點A(2,0),交y軸于點B(0,).
(1)求圓心的坐標;
(2)拋物線y=ax2+bx+c過O、A兩點,且頂點在正比例函數(shù)y=-x的圖象上,求拋物線的解析式;
(3)過圓心C作平行于x軸的直線DE,交⊙C于D、E兩點,試判斷D、E兩點是否在(2)中的拋物線上;
(4)若(2)中的拋物線上存在點P(x,y),滿足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,Rt△AOB的頂點坐標分別為A(0,2),O(0,0),B(4,0),△AOB繞O點按逆時針方向旋轉(zhuǎn)90°得到△COD.
(1)求C、D兩點的坐標;
(2)求經(jīng)過C、D、B三點的拋物線的解析式;
(3)設(2)中的拋物線的頂點為P,AB的中點為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年陜西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,Rt△AOB的頂點坐標分別為A(0,2),O(0,0),B(4,0),△AOB繞O點按逆時針方向旋轉(zhuǎn)90°得到△COD.
(1)求C、D兩點的坐標;
(2)求經(jīng)過C、D、B三點的拋物線的解析式;
(3)設(2)中的拋物線的頂點為P,AB的中點為M,試判斷△PMB是鈍角三角形、直角三角形還是銳角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年陜西省中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•陜西)如圖,在直角坐標系中,⊙C過原點O,交x軸于點A(2,0),交y軸于點B(0,).
(1)求圓心的坐標;
(2)拋物線y=ax2+bx+c過O、A兩點,且頂點在正比例函數(shù)y=-x的圖象上,求拋物線的解析式;
(3)過圓心C作平行于x軸的直線DE,交⊙C于D、E兩點,試判斷D、E兩點是否在(2)中的拋物線上;
(4)若(2)中的拋物線上存在點P(x,y),滿足∠APB為鈍角,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年陜西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•陜西)如圖,直線CF垂直且平分AD于點E,四邊形ADCB是菱形,BA的延長線交CF于點F,連接AC.
(1)圖中有幾對全等三角形,請把它們都寫出來;
(2)證明:△ABC是正三角形.

查看答案和解析>>

同步練習冊答案