【題目】為了對一棵傾斜的古杉樹AB進行保護,需測量其長度.如圖,在地面上選取一點C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,求這棵古杉樹AB的長度.(結(jié)果取整數(shù)) 參考數(shù)據(jù): ≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.

【答案】解:過B點作BD⊥AC于D. ∵∠ACB=45°,∠BAC=66.5°,
∴在Rt△ADB中,AD=
在Rt△CDB中,CD=BD,
∵AC=AD+CD=24m,
+BD=24,
解得BD≈17m.
AB= ≈18m.
故這棵古杉樹AB的長度大約為18m.

【解析】過B點作BD⊥AC于D.分別在Rt△ADB和Rt△CDB中,用BD表示出AD和CD,再根據(jù)AC=AD+CD=24m,列出方程求解即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB邊的垂直平分線BCD,AC邊的垂直平分線BCE 相交于點O,ADE的周長為6cm

1)求BC的長;

2)分別連結(jié)OA、OB、OC,若△OBC的周長為16cm,求OA的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD⊥BC于點D,BD=CD,若BC=5,AD=4,則圖中陰影部分的面積為................... ................... ................... ....... .......... ..... .......... ..... ( )

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折,其余兩次均按標價購買,三次購買商品A、B的數(shù)量和費用如下表:

購買商品A的數(shù)量(個)

購買商品B的數(shù)量(個)

購買總費用(元)

第一次購物

6

5

1140

第二次購物

3

7

1110

第三次購物

9

8

1062


(1)小林以折扣價購買商品A、B是第次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)32﹣|﹣2|﹣(π﹣3)0+ ;
(2)(1+ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設(shè)運動時間為t秒.

(1)當t=時,△PQR的邊QR經(jīng)過點B;
(2)設(shè)△PQR和矩形OABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內(nèi)部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,已知一次函數(shù)y=kx+b(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于點B,且tan∠ABO=3,那么點A的坐標是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AD平分∠BAC,DEABE,則下列結(jié)論:①AD平分∠CDE;②∠BAC=BDEDE平分∠ADB; BE+AC=AB

一定成立的結(jié)論有____________填序號) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方錯誤的是( )
A.x2+2x﹣99=0化為(x+1)2=100
B.
C.x2+8x+9=0化為(x+4)2=25
D.

查看答案和解析>>

同步練習冊答案