數學活動﹣旋轉變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉50°得到△A′B′C,連接BB′,求∠A′B′B的大。
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓.
(Ⅰ)猜想:直線BB′與⊙A′的位置關系,并證明你的結論;
(Ⅱ)連接A′B,求線段A′B的長度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點C逆時針旋轉2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長為半徑作圓,問:角α與角β滿足什么條件時,直線BB′與⊙A′相切,請說明理由,并求此條件下線段A′B的長度(結果用角α或角β的三角函數及字母m、n所組成的式子表示)
科目:初中數學 來源:2016年初中畢業(yè)升學考試(江蘇淮安卷)數學(解析版) 題型:填空題
問題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數量關系.
小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD.
簡單應用:
(1)在圖①中,若AC=,BC=,則CD= .
(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長.
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數量關系是 .
查看答案和解析>>
科目:初中數學 來源:2016年初中畢業(yè)升學考試(江蘇淮安卷)數學(解析版) 題型:選擇題
在“市長杯”足球比賽中,六支參賽球隊進球數如下(單位:個):3,5,6,2,5,1,這組數據的眾數是( )
A.5 B.6 C.4 D.2
查看答案和解析>>
科目:初中數學 來源:2016年初中畢業(yè)升學考試(湖南岳陽卷)數學(解析版) 題型:解答題
已知:如圖,在矩形ABCD中,點E在邊AB上,點F在邊BC上,且BE=CF,EF⊥DF,求證:BF=CD.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com