【題目】如圖,已知拋物線y=﹣x2+2x+3x軸交于A,B兩點(點A在點B的左邊),與y軸交于點C,連接BC.

(1)求A,B,C三點的坐標;

(2)若點P為線段BC上一點(不與B,C重合),PM∥y軸,且PM交拋物線于點M,交x軸于點N,當△BCM的面積最大時,求點P的坐標;

(3)在(2)的條件下,當△BCM的面積最大時,在拋物線的對稱軸上存在一點Q,使得△CNQ為直角三角形,求點Q的坐標.

【答案】1C0,3),A1,0),B3,0);(2)當t=時,BCM的面積最大,此時P點坐標為( );(3Q點的坐標為(1 )或(1, )或(1, )或(1.

【解析】試題分析:(1)在拋物線解析式中,令x=0可求得C點坐標,令y=0則可求得A、B的坐標;(2)由B、C的坐標可求得直線BC的解析式為y=﹣x+3,可設P點坐標為(tt+3),則可表示出M點坐標,則可求得PM的長,從而可用t表示出△BCM的面積,再利用二次函數(shù)的性質(zhì)可求得當△BCM的面積最大時t的值,可求得P點坐標;

3)由(2)可知N點坐標,設Q點坐標為(1,m),則可用m分別表示出QN、QCCN,分點C為直角頂點、點Q為直角頂點和點N為直角頂點三種情況,分別根據(jù)勾股定理可得到關于m的方程,可求得m的值,可求得Q點坐標.

試題解析:解:(1)在y=﹣x2+2x+3中,令x=0可得y=3,,C0,3),令y=0,可得﹣x2+2x+3=0,解得x=3x=﹣1A﹣1,0),B3,0);

2)設直線BC的解析式為y=kx+b,則有: ,解得: ,∴直線BC的解析式為y=x+3.設Pt,t+3),則Mt,t2+2t+3),PM=t2+2t+3t+3=t2+3t,SBCM=PMON+BN= PMOB= ×3t2+3t=t 2+ ∵﹣ 0,∴當t= 時,△BCM的面積最大,此時P點坐標為(

3y=x2+2x+3=x12+4,∴拋物線的對稱軸為直線x=1,∴設Q1,m),且C0,3),N,0),CN==,CQ= =,NQ= = ∵△CNQ為直角三角形,∴分點C為直角頂點、點Q為直角頂點和點N為直角頂點三種情況:

①當點C為直角頂點時,則有CN2+CQ2=NQ2 ,即(2+m26m+10= +m2 ,解得m=,此時Q點坐標為(1, );

②當點Q為直角頂點時,則有NQ2+CQ2=CN2 ,即(m26m+10+ +m2= 2 ,解得x= x= ,此時Q點坐標為(1, )或(1, );

③當點N為直角頂點時,則有NQ2+CN2=CQ2 ,即( 2+ +m2=m26m+10,解得m= ,此時Q點坐標為(1,);

綜上可知Q點的坐標為(1, )或(1 )或(1, )或(1,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某旅行社組織一批游客外出旅游,原計劃租用30座客車若干輛,但有15人沒有座位;若租用同樣數(shù)量的45座客車,則多出一輛車,且其余客車恰好坐滿。已知30座客車租金為每輛220元,45座客車租金為每輛300元,問:

1)這批游客的總?cè)藬?shù)是多少?原計劃租用多少輛30座客車?

2)若租用同一種客車,要使每位游客都有座位,應該怎樣租用才合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點,∠AOB=110°,∠BOC,△BOC≌△ADC,∠OCD=60°,連接OD

1)求證:△OCD是等邊三角形.

2)當α=150°時,試判斷△AOD的形狀(按角分類),并說明理由.

3)求∠OAD的度數(shù).

4)探究:當α=   時,△AOD是等腰三角形.(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知:如圖①,直線MN⊥直線PQ,垂足為O,點A在射線OP上,點B在射線OQ上(A、B不與O點重合),點C在射線ON上,過點C作直線,點D在點C的左邊。

1)若BD平分∠ABC,,則_____°

2)如圖②,若,作∠CBA的平分線交OCE,交ACF,試說明;

3)如圖③,若∠ADC=DAC,點B在射線OQ上運動,∠ACB的平分線交DA的延長線于點H.在點B運動過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是某公園一塊草坪上的自動旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個扇形.小濤同學想了解這種裝置能夠噴灌的草坪面積,他測量出了相關數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知OP平分∠AOB,∠DCE的頂點C在射線OP上,射線CD交射線OA于點F,射線CE交射線OB于點G

1)如圖1,若CDOACEOB,請直接寫出線段CFCG的數(shù)量關系;

2)如圖2,若∠AOB=120,∠DCE=AOC,試判斷線段CFCG的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應珠海環(huán)保城市建設,我市某污水處理公司不斷改進污水處理設備,新設備每小時處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時間比現(xiàn)在多用10小時.

(1)原來每小時處理污水量是多少m2?

(2)若用新設備處理污水960m3,需要多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,三角形ABC中,DBC邊上一點.

(1)過點DAB、AC的平行線分別交AB于點E,AC于點F;

(2)說明:EDF=A;

(3)說明:A+B+C=180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019526日振奮人心的數(shù)博會在我省貴陽市隆重召開。某校組織部分師生前往參觀學習,租用A、B兩種型號的旅游車共8輛。一輛A型車可坐40,一輛B型車可坐35人。

(1)若前往參觀的師生共310,為了剛好將全部師生送達目的地,應分別租用A、B兩種型號的旅游車各多少輛?

(2)A型號的車每輛租金需220,B型號的車每輛租金需160,學校要求總租車費用不超過1540,那么最多可租用多少輛A型號的旅游車?

查看答案和解析>>

同步練習冊答案