已知,如圖,線段AB上有任一點M,分別以AM,BM為邊長作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圓⊙O、⊙O′交于M、N兩點,則直線MN的情況是


  1. A.
    定直線
  2. B.
    經(jīng)過定點
  3. C.
    一定不過定點
  4. D.
    以上都有可能
B
分析:連接NA,NB,根據(jù)四邊形AMFE、MBCD都是正方形,得到∠ANM=∠BNM=45°,即∠ANM=90°,證得點N總在以AB為直徑的圓上,延長NM交以AB為直徑的圓于P點,可得到P為半圓的中點,由于AB固定,則點P為定點.
解答:解:連接NA,NB.如圖,
∵四邊形AMFE、MBCD都是正方形,
∴在⊙O中,∠ANM=45°;在⊙O′中,∠BNM=45°,
即∠ANM=90°,所以點N總在以AB為直徑的圓上,
延長NM交以AB為直徑的圓于P點.
∵∠ANM=∠BNM=45°,
∴弧PA=弧PB,即P為半圓的中點.由于AB固定,則點P為定點.
所以直線MN過定點P.
故選B.
點評:本題考查了圓周角定理及其討論.同弧所對的圓周角是它所對的圓心角的一半;在同圓或等圓中,相等的圓周角所對的弧相等;90度的圓周角所對的弦為直徑.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,線段AB⊥BC,DC⊥BC,垂足分別為點B、C.
(1)當AB=6,DC=2,BC=8時,點P在線段BC運動,不與點B、C重合.
①若△ABP與△PCD可能全等,請直接寫出
BPPC
的值;
②若△ABP與△PCD相似,求線段BP的長.
(2)探究:設AB=a,DC=b,AD=c,那么當a、b、c之間滿足什么關系時,在直線BC上存在點P,使AP⊥PD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、已知,如圖,線段AB上有任一點M,分別以AM,BM為邊長作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圓⊙O、⊙O′交于M、N兩點,則直線MN的情況是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,線段AB=10cm,點O是線段AB的中點,線段BC=3cm,則線段OC=
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,線段AB=10cm,點C為線段AB上一點,BC=3cm,點D、點E分別為AC和AB的中點,則線段DE的長為
 
cm,請對你所得到的結論加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,線段AB、DE表示一個斜靠在墻上的梯子的兩個不同的位置,若CB=3m,∠ABC=45°,要使∠EDC=60°,則需BD=
3-
3
2
2
3-
3
2
2
m.

查看答案和解析>>

同步練習冊答案