(2012•昌平區(qū)二模)類比學習:
有這樣一個命題:設x、y、z都是小于1的正數(shù),求證:x(1-y)+y(1-z)+z(1-x)<1.
小明同學是這樣證明的:如圖,作邊長為1的正三角形ABC,并分別在其邊上截取AD=x,BE=z,CF=y,設△ADF、△CEF和△BDE的面積分別為S1、S2、S3,
S1=
1
2
x(1-y)sin60°
,
S2=
1
2
y(1-z)sin60°

S3=
1
2
z(1-x)sin60°

由 S1+S2+S3<S△ABC,得 
1
2
x(1-y)sin60°
+
1
2
y(1-z)sin60°
+
1
2
z(1-x)sin60°
3
4

所以 x(1-y)+y(1-z)+z(1-x)<1.
類比實踐:
已知正數(shù)a、b、c、d,x、y、z、t滿足a+x=b+y=c+z=d+t=k.
求證:ay+bz+ct+dx<2k2
分析:首先作出邊長為k的正方形ABCD,并分別在各邊上截取:AE=a,DH=b,CG=c,BF=d,則BE=x,AH=y,DG=z,CF=t,利用圖形面積求出
1
2
ay+
1
2
dx+
1
2
ct+
1
2
bz<k2,進而得出答案即可.
解答:證明:如圖,作邊長為k的正方形ABCD.
并分別在各邊上截。
AE=a,DH=b,CG=c,BF=d,
∵a+x=b+y=c+z=d+t=k,
∴BE=x,AH=y,DG=z,CF=t.
∵∠A=∠B=∠C=∠D=90°,
∴S1=
1
2
ay,S2=
1
2
dx,S3=
1
2
ct,S4=
1
2
bz.
∵S1+S2+S3+S4<S正方形ABCD,
1
2
ay+
1
2
dx+
1
2
ct+
1
2
bz<k2
∴ay+bz+ct+dx<2k2
點評:此題主要考查了正方形的性質,根據(jù)已知構造正方形進而表示出各三角形面積是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•昌平區(qū)二模)如圖,AB是⊙O的直徑,C、D是⊙O上的兩點,若∠ABC=70°,則∠BDC的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•昌平區(qū)二模)如圖,用一個交叉卡鉗(兩條尺長AC和BD相等,OC=OD)量零件的內(nèi)孔直徑AB.若OC:OA=1:2,量得CD=10,則零件的內(nèi)孔直徑AB長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•昌平區(qū)二模)已知一個菱形的周長是20,兩條對角線的長的比是4:3,則這個菱形的面積是
24
24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•昌平區(qū)二模)如圖的方格紙中,每個小方格都是邊長為1的正方形,A、B兩點是方格紙中的兩個格點,在4×5的方格紙中,找出格點C,使△ABC的面積為1個平方單位,則滿足條件的格點C的個數(shù)是
6
6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•昌平區(qū)二模)列方程(組)解應用題:
李明同學喜歡自行車和長跑兩項運動,在某次訓練中,他騎自行車的平均速度為每分鐘600米,跑步的平均速度為每分鐘200米,自行車路段和長跑路段共5000米,用時15分鐘.求自行車路段和長跑路段的長度.

查看答案和解析>>

同步練習冊答案