(2005•漳州)為了解臺灣水果在大陸民眾中受歡迎情況,采用什么形式調(diào)查為好    .(填“普查“或“抽樣調(diào)查“)
【答案】分析:調(diào)查方式的選擇需要將普查的局限性和抽樣調(diào)查的必要性結(jié)合起來,具體問題具體分析,普查結(jié)果準(zhǔn)確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應(yīng)選擇普查方式,當(dāng)考查的對象很多或考查會給被調(diào)查對象帶來損傷破壞,以及考查經(jīng)費和時間都非常有限時,普查就受到限制,這時就應(yīng)選擇抽樣調(diào)查.
解答:解:為了解臺灣水果在大陸民眾中受歡迎情況如果普查,因為個體數(shù)量多,范圍廣,工作量大,不宜采用,只能采用抽樣調(diào)查.
點評:本題考查的是調(diào)查方法的選擇;正確選擇調(diào)查方式要根據(jù)全面調(diào)查的優(yōu)缺點再結(jié)合實際情況去分析.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市中考數(shù)學(xué)模擬試卷一(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年陜西省西安市師大附中中考數(shù)學(xué)模擬試卷(楊麗敏)(解析版) 題型:解答題

(2005•漳州)如圖,已知拋物線的頂點坐標(biāo)為M(1,4),且經(jīng)過點N(2,3),與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求拋物線的解析式及點A、B、C的坐標(biāo);
(2)若直線y=kx+t經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P在拋物線的對稱軸x=1上運動,請?zhí)剿鳎涸趚軸上方是否存在這樣的P點,使以P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)收集與處理》(02)(解析版) 題型:填空題

(2005•漳州)為了解臺灣水果在大陸民眾中受歡迎情況,采用什么形式調(diào)查為好    .(填“普查“或“抽樣調(diào)查“)

查看答案和解析>>

同步練習(xí)冊答案