【題目】如圖,拋物線軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),連結(jié),點(diǎn)C(6,)在拋物線上,直線軸交于點(diǎn)

(1)的值及直線的函數(shù)表達(dá)式;

(2)點(diǎn)軸正半軸上,點(diǎn)軸正半軸上,連結(jié)與直線交于點(diǎn),連結(jié)并延長交于點(diǎn),若的中點(diǎn).

①求證:;

②設(shè)點(diǎn)的橫坐標(biāo)為,求的長(用含的代數(shù)式表示)

【答案】(1)c=-3; 直線AC的表達(dá)式為:y=x+3;(2)①證明見解析;②

【解析】

試題(1)把點(diǎn)C(6,)代入中可求出c的值;令y=0,可得A點(diǎn)坐標(biāo),從而可確定AC的解析式;

(2)①分別求出tanOAB=tanOAD=,得∠OAB=tanOAD,再由MPQ的中點(diǎn),得OM=MP,所以可證得∠APM=AON,即可證明;

②過M點(diǎn)作MEx軸,垂足為E,分別用含有m的代數(shù)式表示出AEAM的長,然后利用即可求解.

試題(1)把點(diǎn)C(6,)代入

解得:c=-3

當(dāng)y=0時(shí),

解得:x1=-4,x2=3

A(-4,0)

設(shè)直線AC的表達(dá)式為:y=kx+b(k≠0)

A(-4,0),C(6,)代入得

解得:k=,b=3

∴直線AC的表達(dá)式為:y=x+3

(2)①在RtΔAOB中,tanOAB=

RtΔAOD中,tanOAD=

∴∠OAB=OAD

∵在RtΔPOQ中,MPQ的中點(diǎn)

OM=MP

∴∠MOP=MPO

∵∠MPO=AON

∴∠APM=AON

ΔAPMΔAON

②如圖,過點(diǎn)MMEx軸于點(diǎn)E

又∵OM=MP

OE=EP

∵點(diǎn)M橫坐標(biāo)為m

AE=m+4 AP=2m+4

tanOAD=

cosEAM=cosOAD=

AM=AE=

ΔAPMΔAON

AN=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在一個(gè)點(diǎn)M,使得MP=MC,則稱點(diǎn)P為⊙C的“等徑點(diǎn)”,已知點(diǎn)D(,),E(0,2),F(xiàn)(﹣2,0).

(1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)D,E,F(xiàn)中,⊙O的“等徑點(diǎn)”是哪幾個(gè)點(diǎn);

②作直線EF,若直線EF上的點(diǎn)T(m,n)是⊙O的“等徑點(diǎn)”,求m的取值范圍.

(2)過點(diǎn)E作EG⊥EF交x軸于點(diǎn)G,若△EFG各邊上所有的點(diǎn)都是某個(gè)圓的“等徑點(diǎn)”,求這個(gè)圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上;如圖,此時(shí)測得地面上的影長為8米,坡面上的影長為4已知斜坡的坡角為30°,同一時(shí)刻,一根長為1米,垂直于地面放置的標(biāo)桿在地面上的影長為2米,則樹的高度為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一堤壩的坡角∠ABC=62°,坡面長度AB=25米(圖為橫截面),為了使堤壩更加牢固,一施工隊(duì)欲改變堤壩的坡面,使得坡面的坡角∠ADB=50°,則此時(shí)應(yīng)將壩底向外拓寬多少米?(結(jié)果保留到0.01米)(參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)的增大而增大,那么反比例函數(shù)的關(guān)系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線.動(dòng)點(diǎn)軸上運(yùn)動(dòng),過點(diǎn)軸,交拋物線于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

(Ⅰ)求拋物線的解析式和直線的解析式;

(Ⅱ)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),求線段的最大值;

(Ⅲ)當(dāng)以、、、為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出的值.

查看答案和解析>>

同步練習(xí)冊答案