如圖,雙曲線y=經(jīng)過Rt△OMN斜邊上的點(diǎn)A,與直角邊MN相交于點(diǎn)B,已知OA=2AN,△OAB的面積為5,則k的值是   
【答案】分析:過A點(diǎn)作AC⊥x軸于點(diǎn)C,易得△OAC∽△ONM,則OC:OM=AC:NM=OA:ON,而OA=2AN,即OA:ON=2:3,設(shè)A點(diǎn)坐標(biāo)為(a,b),得到N點(diǎn)坐標(biāo)為(a,b),由點(diǎn)A與點(diǎn)B都在y=圖象上,
根據(jù)反比例函數(shù)的坐標(biāo)特點(diǎn)得B點(diǎn)坐標(biāo)為(a,b),由OA=2AN,△OAB的面積為5,△NAB的面積為,則△ONB的面積=5+=,根據(jù)三角形面積公式得NB•OM=,即×(b-b)×a=,化簡得ab=12,即可得到k的值.
解答:解:過A點(diǎn)作AC⊥x軸于點(diǎn)C,如圖,
則AC∥NM,
∴△OAC∽△ONM,
∴OC:OM=AC:NM=OA:ON,
而OA=2AN,即OA:ON=2:3,設(shè)A點(diǎn)坐標(biāo)為(a,b),則OC=a,AC=b,
∴OM=a,NM=b,
∴N點(diǎn)坐標(biāo)為(a,b),
∴點(diǎn)B的橫坐標(biāo)為a,設(shè)B點(diǎn)的縱坐標(biāo)為y,
∵點(diǎn)A與點(diǎn)B都在y=圖象上,
∴k=ab=a•y,
∴y=b,即B點(diǎn)坐標(biāo)為(a,b),
∵OA=2AN,△OAB的面積為5,
∴△NAB的面積為
∴△ONB的面積=5+=,
NB•OM=,即×(b-b)×a=
∴ab=12,
∴k=12.
故答案為12.
點(diǎn)評:本題考查了反比例函數(shù)綜合題:反比例函數(shù)y=圖象上的點(diǎn)的橫縱坐標(biāo)的積都等于k;利用相似三角形的判定與性質(zhì)求線段之間的關(guān)系,從而確定某些點(diǎn)的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,雙曲線經(jīng)過四邊形OABC的頂點(diǎn)  A、C,∠ABC= 900,OC平分OA與x軸正半軸的夾角.  AB//x軸,將∆ABC沿AC翻折后得△AB’C,點(diǎn)B’落在 OA上,則四邊形OABC的面積是______

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省鄂州市第三中學(xué)八年級下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:單選題

如圖,雙曲線經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C,若點(diǎn)A的坐標(biāo)為(-6,4),則△AOC的面積為

A.12B.6C.9D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省杭州市亭趾實(shí)驗(yàn)學(xué)校九年級上期中考試數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,雙曲線經(jīng)過四邊形OABC的頂點(diǎn)A、C,∠ABC=90°,OC平分OA與軸正半軸的夾角,AB∥軸,將△ABC沿AC翻折后得到△AB'C,B'點(diǎn)落在OA上,則四邊形OABC的面積是 _________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇揚(yáng)州卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,雙曲線經(jīng)過Rt△OMN斜邊上的點(diǎn)A,與直角邊MN相交于點(diǎn)B,已知OA=2AN,△OAB的面積為5,則k的值是 ▲ 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市新區(qū)九年級下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:填空題

如圖,雙曲線經(jīng)過矩形QABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D。若梯形ODBC的面積為3,則雙曲線的解析式為  ▲

 

查看答案和解析>>

同步練習(xí)冊答案