如圖,AB是⊙O的直徑,AC和BD是它的兩條切線,CO平分∠ACD.

(1)求證:CD是⊙O的切線;(2)若AC=2,BC=3,求AB的長.

 

【答案】

(1)證明見解析(2)2

【解析】(1)證明:過O點作OE⊥CD,垂足為E,

 

 

 ∵AC是切線,∴OA⊥AC。

∵CO平分∠ACD,OE⊥CD,∴∠ACO=∠ECO,∠CAO=∠CEO,

又∵OC=OC,∴△ACO≌△ECO(AAS)!郞A=OE。

∴CD是⊙O的切線。

(2)解:過C點作CF⊥BD,垂足為F,

 

 

∵AC,CD,BD都是切線,∴AC=CE=2,BD=DE=3。

∴CD=CE+DE=5。

∵∠CAB=∠ABD=∠CFB=90°,∴四邊形ABFC是矩形。

∴BF=AC=2,DF=BD﹣BF=1。

在Rt△CDF中,CF2=CD2﹣DF2=52﹣12=24,∴AB=CF=2。

(1)過O點作OE⊥CD于點E,通過角平分線的性質(zhì)得出OE=OA即可證得結(jié)論。

(2)過點D作DF⊥BC于點F,根據(jù)切線的性質(zhì)可得出DC的長度,從而在Rt△DFC中利用勾股定理可得出DF的長,可得出AB的長度。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案