【題目】將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ =θ, ,我們將這種變換記為[θ,n] .
(1)如圖①,對△ABC作變換[60°,]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
【答案】(1) 3 ; 60°;(2)2;(3)
【解析】試題分析:(1)由旋轉(zhuǎn)與相似的性質(zhì),即可得S△AB′C′:S△ABC=3,然后由△ABN與△B′MN中,∠B=∠B′,∠ANB=∠B′NM,可得∠BMB′=∠BAB′,即可求得直線BC與直線B′C′所夾的銳角的度數(shù);
(2)由四邊形 ABB′C′是矩形,可得∠BAC′=90°,然后由θ=∠CAC′=∠BAC′-∠BAC,即可求得θ的度數(shù),又由含30°角的直角三角形的性質(zhì),即可求得n的值;
(3)由四邊形ABB′C′是平行四邊形,易求得θ=∠CAC′=∠ACB=72°,又由△ABC∽△B′BA,根據(jù)相似三角形的對應(yīng)邊成比例,易得AB2=CBBB′=CB(BC+CB′),繼而求得答案.
試題解析:
(1)根據(jù)題意得:△ABC∽△AB′C′,
∴S△AB′C′:S△ABC=()2=()2=3,∠B=∠B′,
∵∠ANB=∠B′NM,
∴∠BMB′=∠BAB′=60°;
(2)∵四邊形 ABB′C′是矩形,
∴∠BAC′=90°.
∴θ=∠CAC′=∠BAC′-∠BAC=90-30=60°.
在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,
∴∠AB′B=30°,
∴n= =2;
(3)∵四邊形ABB′C′是平行四邊形,
∴AC′∥BB′,
又∵∠BAC=36°,
∴θ=∠CAC′=∠AC′B′=72°.
∴∠BB′A=∠BAC=36°,而∠B=∠B,
∴△ABC∽△B′BA,
∴AB:BB′=CB:AB,
∴AB2=CBBB′=CB(BC+CB′),
而CB′=AC=AB=B′C′,BC=1,
∴AB2=1(1+AB),
∴AB=,
∵AB>0,
∴n==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(a,5)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(1,b+1),則點(diǎn)(a,b)在第象限.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直角三角形ABO的周長為100,在其內(nèi)部有n個小直角三角形周長之和為( )
A.90
B.100
C.110
D.120
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如果把圖中任一條線段沿方格線平移1格稱為“1步”,那么要通過平移使圖中的3條線段首尾相接組成一個三角形,最少需要
A.4步
B.5步
C.6步
D.7步
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一種產(chǎn)品的年產(chǎn)量是20件,如果每一年都比上一年的產(chǎn)品增加x倍,兩年后產(chǎn)品y與x的函數(shù)關(guān)系是( )
A.y=20(1﹣x)2
B.y=20+2x
C.y=20(1+x)2
D.y=20+20x2+20x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(﹣2,y1),B(1,y2),C(2,y3)是拋物線y=﹣(x+1)2+1上的三點(diǎn),則y1 , y2 , y3的大小關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD內(nèi)接于⊙O ,BD是⊙O 的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O 的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樂平街上新開張了一家“好又多”超市,這個星期天,張明和媽媽去這家新開張的超市買東西,如圖反映了張明從家到超市的時間t(分鐘)與距離s(米)之間關(guān)系的一幅圖:①圖中反映了哪兩個變量之間的關(guān)系?超市離家多遠(yuǎn)?②張明從家出發(fā)到達(dá)超市用了多少時間?從超市返回家花了多少時間?
③張明從家出發(fā)后20分鐘到30分鐘內(nèi)可能在做什么?④張明從家到超市時的平均速度是多少?返回時的平均速度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com