(2001•吉林)為了保護(hù)學(xué)生的視力,課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,研究表明:假設(shè)課桌的高度為ycm,椅子的高度(不含靠背)為xcm,則y應(yīng)是x的一次函數(shù),下表列出兩套符合條件的課桌椅的高度:
第一套第二套
椅子高度x(cm)40.037.0
桌子高度y(cm)75.070.0
(1)請(qǐng)確定y與x的函數(shù)關(guān)系式(不要求寫(xiě)出x的取值范圍);
(2)現(xiàn)有一把高42.0cm的椅子和一張高78.2m的課桌,它們是否配套?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
【答案】分析:(1)先設(shè)出其函數(shù)關(guān)系,將題中的數(shù)據(jù)代入可得k,b的值,即可得它們的函數(shù)關(guān)系式;
(2)將x=42,代入(1)中求得的解析式可得y的值,進(jìn)而可以判斷出結(jié)論.
解答:解:(1)根據(jù)題意,設(shè)y=kx+b,
將x=40,y=75;x=37,y=70;
代入可得:k=,b=
故y與x的函數(shù)關(guān)系式y(tǒng)=x+

(2)將x=42.0,代入解析式可得y=70+=78.3>78.2;
可得它們不是配套的.
點(diǎn)評(píng):主要考查利用一次函數(shù)的模型解決實(shí)際問(wèn)題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.
解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:解答題

(2001•吉林)如圖,已知反比例函數(shù)和一次函數(shù)y=2x-1,其中一次函數(shù)的圖象經(jīng)過(guò)(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請(qǐng)問(wèn):在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:解答題

(2001•吉林)如圖,已知反比例函數(shù)和一次函數(shù)y=2x-1,其中一次函數(shù)的圖象經(jīng)過(guò)(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請(qǐng)問(wèn):在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•吉林)如圖,已知反比例函數(shù)和一次函數(shù)y=2x-1,其中一次函數(shù)的圖象經(jīng)過(guò)(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請(qǐng)問(wèn):在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來(lái);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•吉林)為了保護(hù)學(xué)生的視力,課桌椅的高度都是按一定的關(guān)系配套設(shè)計(jì)的,研究表明:假設(shè)課桌的高度為ycm,椅子的高度(不含靠背)為xcm,則y應(yīng)是x的一次函數(shù),下表列出兩套符合條件的課桌椅的高度:
第一套第二套
椅子高度x(cm)40.037.0
桌子高度y(cm)75.070.0
(1)請(qǐng)確定y與x的函數(shù)關(guān)系式(不要求寫(xiě)出x的取值范圍);
(2)現(xiàn)有一把高42.0cm的椅子和一張高78.2m的課桌,它們是否配套?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案