如圖,△ABC經(jīng)過(guò)平移變換到了△DEF,若∠BAC=40°,AD=2cm,則∠EDF=________,點(diǎn)C到點(diǎn)F之間的距離為_(kāi)_______cm.

40°    2
分析:根據(jù)平移的基本性質(zhì):圖形上對(duì)應(yīng)點(diǎn)移動(dòng)的距離都相等.
解答:∵△ABC經(jīng)過(guò)平移變換到了△DEF,∠BAC=40°,AD=2cm,
∴∠EDF=∠BAC=40°,點(diǎn)C到點(diǎn)F之間的距離=AD=2cm.
點(diǎn)評(píng):本題考查平移的基本性質(zhì),經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.關(guān)鍵是找出正確對(duì)應(yīng)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們所學(xué)的幾何知識(shí)可以理解為對(duì)“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問(wèn)題(或者根據(jù)問(wèn)題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問(wèn)題(包括研究的思想和方法).
請(qǐng)你用上面的思想和方法對(duì)下面關(guān)于圓的問(wèn)題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點(diǎn)A、B),根據(jù)這個(gè)圖形可以提出的概念或問(wèn)題有哪些?(直接寫(xiě)出兩個(gè)即可)
(2)如圖2,在圓O所在平面上,請(qǐng)你放置與圓O都相交且不同時(shí)經(jīng)過(guò)圓心的兩條直線m和n(m與圓O分別交于點(diǎn)A、B,n與圓O分別交于點(diǎn)C、D).請(qǐng)你根據(jù)所構(gòu)造的圖形提出一個(gè)結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點(diǎn),弦DE精英家教網(wǎng)⊥AB于點(diǎn)F.請(qǐng)找出點(diǎn)C和點(diǎn)E重合的條件,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•新區(qū)二模)在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC
將△ABC繞點(diǎn)O旋轉(zhuǎn)180°后可得到△ADC


(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B′處(如圖2-2),這樣能得到∠B′GC的大小,你知道∠B′GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.
(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15
15
,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,請(qǐng)利用圖形變換探究S△AOB′+S△BOC′+S△COA′
3
的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•高郵市二模)如圖,半徑為
3
cm的⊙O從斜坡上的A點(diǎn)處沿斜坡滾動(dòng)到平地上的C點(diǎn)處,已知∠ABC=120°,AB=10cm,BC=20cm,那么圓心O運(yùn)動(dòng)所經(jīng)過(guò)的路徑長(zhǎng)度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程 ▲ 
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.

(3)第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請(qǐng)判斷這個(gè)三角形的形狀,若不能構(gòu)成,請(qǐng)說(shuō)明理由.

(4)探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇無(wú)錫濱湖中學(xué)九年級(jí)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對(duì)稱)變換和平移變換.一次數(shù)學(xué)活動(dòng)課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動(dòng).


【小題1】第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點(diǎn)O,Rt△ADC可以由Rt△ABC經(jīng)過(guò)一種變換得到,請(qǐng)你寫(xiě)出這種變換的過(guò)程是                      
【小題2】第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對(duì)折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點(diǎn)B落在EF上的點(diǎn)B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請(qǐng)寫(xiě)出求解過(guò)程.
【小題3】第三小組的同學(xué),在一個(gè)矩形紙片上按照?qǐng)D3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動(dòng)AC的長(zhǎng)度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,AC長(zhǎng)為a,現(xiàn)以AD、AF和AH為三邊構(gòu)成一個(gè)新三角形,已知這個(gè)新三角形面積小于15,請(qǐng)你幫助該小組求出a可能的最大整數(shù)值.

【小題4】探究活動(dòng)結(jié)束后,老師給大家留下了一道探究題:
如圖4-1,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,請(qǐng)利用圖形變換探究SAOB'+SBOC'+SCOA'與的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案