若兩個三角形三個頂點分別關(guān)于同一直線對稱,則兩個三角形關(guān)于該直線軸對稱.

 

【答案】

【解析】

試題分析:根據(jù)軸對稱的性質(zhì)即可判斷。

若兩個三角形三個頂點分別關(guān)于同一直線對稱,則兩個三角形關(guān)于該直線軸對稱,對。

考點:本題考查的是軸對稱的性質(zhì)

點評:解答本題的關(guān)鍵是熟練掌握若兩個三角形三個頂點分別關(guān)于同一直線對稱,則兩個三角形關(guān)于該直線軸對稱.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(14分)在研究勾股定理時,同學(xué)們都見到過圖1,∠,四邊形、都是正方形.

⑴連結(jié)、得到圖2,則△≌△,此時兩個三角形全等的判定依據(jù)是

   ;過,交,則;同理,得,然后可證得勾股定理.

⑵在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學(xué)們可以探究△、△、△的面積關(guān)系是          .

⑶為了研究問題的需要,將圖1中的也進(jìn)行“退化”為銳角△,并擦去正方形得圖4,由兩邊向三角形外作正△、正△,△的外接圓與交于點,此時、共線,從△內(nèi)一點到、、三個頂點的距離之和最小的點恰為點(已經(jīng)被他人證明).設(shè)=3,=4,.求的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(14分)在研究勾股定理時,同學(xué)們都見到過圖1,∠,四邊形、都是正方形.
⑴連結(jié)得到圖2,則△≌△,此時兩個三角形全等的判定依據(jù)是
  ;過,交,則;同理,得,然后可證得勾股定理.
⑵在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學(xué)們可以探究△、△、△的面積關(guān)系是        .
⑶為了研究問題的需要,將圖1中的也進(jìn)行“退化”為銳角△,并擦去正方形得圖4,由兩邊向三角形外作正△、正△,△的外接圓與交于點,此時、、共線,從△內(nèi)一點到、三個頂點的距離之和最小的點恰為點(已經(jīng)被他人證明).設(shè)=3,=4,.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省天臺、椒江、玉環(huán)九年級第一次模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題

(14分)在研究勾股定理時,同學(xué)們都見到過圖1,∠,四邊形、、都是正方形.
⑴連結(jié)、得到圖2,則△≌△,此時兩個三角形全等的判定依據(jù)是
  ;過,交,則;同理,得,然后可證得勾股定理.
⑵在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學(xué)們可以探究△、△、△的面積關(guān)系是        .
⑶為了研究問題的需要,將圖1中的也進(jìn)行“退化”為銳角△,并擦去正方形得圖4,由兩邊向三角形外作正△、正△,△的外接圓與交于點,此時、、共線,從△內(nèi)一點到、三個頂點的距離之和最小的點恰為點(已經(jīng)被他人證明).設(shè)=3,=4,.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省天臺、椒江、玉環(huán)九年級第一次模擬考試數(shù)學(xué)卷(解析版) 題型:解答題

(14分)在研究勾股定理時,同學(xué)們都見到過圖1,∠,四邊形、都是正方形.

⑴連結(jié)、得到圖2,則△≌△,此時兩個三角形全等的判定依據(jù)是

   ;過,交,則;同理,得,然后可證得勾股定理.

⑵在圖1中,若將三個正方形“退化”為正三角形,得到圖3,同學(xué)們可以探究△、△、△的面積關(guān)系是          .

⑶為了研究問題的需要,將圖1中的也進(jìn)行“退化”為銳角△,并擦去正方形得圖4,由兩邊向三角形外作正△、正△,△的外接圓與交于點,此時、共線,從△內(nèi)一點到、三個頂點的距離之和最小的點恰為點(已經(jīng)被他人證明).設(shè)=3,=4,.求的值.

 

查看答案和解析>>

同步練習(xí)冊答案