分析 (1)利用角平分線的定義可得∠DOC=50°,由垂直的定義可得∠BOD=90°,易得∠BOC=40°,因為OA⊥OC,可得結果;
(2)利用垂直的定義易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,設∠DOF=∠COF=x,利用平分線的定義可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°-2x,由平角的定義可得5x+90°-2x=180°,解得x,即得結果.
解答 解:(1)∵∠DOF=25°,OF平分∠COD,
∴∠DOC=50°,
∵OB⊥OD,
∴∠BOC=90°-50°=40°,
∵OA⊥OC,
∴∠AOB=90°-∠BOC=50°;
(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,
∴∠COD=∠AOB,
設∠DOF=∠COF=x,
∵OA平分∠BOE,
∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°-2x,
∴5x+90°-2x=180°,
解得:x=30°,
即∠DOF=30°.
故答案為:30°.
點評 本題主要考查了角平分線的定義和垂直的定義,利用定義得出各角的度數(shù)是解答此題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{3x}{y}=\frac{9}{2}$ | B. | $\frac{x+3}{y+3}=\frac{6}{5}$ | C. | $\frac{x-3}{y-2}=\frac{3}{2}$ | D. | $\frac{x+y}{x}=\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 3,4,6 | B. | 5,12,13 | C. | 6,8,10 | D. | $\sqrt{2}$,$\sqrt{2}$,2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com