分析 ①由圖象與x軸有交點(diǎn),對(duì)稱軸為x=$-\frac{2a}$=-1,與y軸的交點(diǎn)在y軸的正半軸上,可以推出b2-4ac>0,可對(duì)①進(jìn)行判斷;
②由拋物線的開口向下知a<0,與y軸的交點(diǎn)在y軸的正半軸上得到c>0,由對(duì)稱軸為x=$-\frac{2a}$=-1,可以②進(jìn)行分析判斷;
③由x=1時(shí),由圖象可知y≠0,可對(duì)③進(jìn)行分析判斷;
④由拋物線的開口向下知a<0,與y軸的交點(diǎn)在y軸的正半軸上得到c>0,得出c-a與0的大小即可對(duì)④進(jìn)行判斷.
解答 解:①∵圖象與x軸有交點(diǎn),對(duì)稱軸為x=$-\frac{2a}$=-1,與y軸的交點(diǎn)在y軸的正半軸上,
又∵二次函數(shù)的圖象是拋物線,
∴與x軸有兩個(gè)交點(diǎn),
∴b2-4ac>0,即b2>4ac,故①正確;
②∵拋物線的開口向下,
∴a<0,
∵與y軸的交點(diǎn)在y軸的正半軸上,
∴c>0,
∵對(duì)稱軸為x=$-\frac{2a}$=-1,
∴2a=b,
故②錯(cuò)誤;
③∵x=1時(shí),
由圖象可知y≠0,故③錯(cuò)誤;
④∵拋物線的開口向下,
∴a<0,
∵與y軸的交點(diǎn)在y軸的正半軸上,
∴c>0,
∴c-a>0,故④正確;
故答案為:①④.
點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,解答此類問題的關(guān)鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個(gè)數(shù)確定,解題時(shí)要注意數(shù)形結(jié)合思想的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 14 | C. | 12 | D. | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com