如圖,在直角梯形ABCD中,AB⊥BC,EF是梯形的中位線,AB∥DH,且AD=1,BC=3,CD=4,有下列4個結論:(1)∠BCD=60°,(2)EH=2,(3)四邊形EHCF是菱形;(4)以AB為直徑的圓與CD相切于點F,其中正確的是________(把你認為正確結論的序號都填上).

解:在Rt△DCH中,CD=4,CH=CB-BH=2,
∴∠DCH=60°,即∠BCD=60°,
在四邊形EHCF中,又CH=EF=2,CH∥EF,CF=CD=2,
∴四邊形EHCF是菱形,
∵S△BEH=BH•EB=×1×EB=EB,
S△CEH=CH•EB=×2×EB=EB,
∴S△BEH=S△CEH
以AB的直徑的圓的半徑為 ,而EF=2,R≠EF.
所以AB為直徑的圓與CD不相切于點F.
則①②③正確.
故答案是:①②③.
分析:在直角三角形CDH中,CH=BC-BH,而四邊形ABHD是矩形,故AD=BH,從而可求CH,利用三角函數(shù)可求∠DCH,即∠DCB的值;再利用梯形中位線定理,及F時CD中點,可證四邊形EHCF是菱形;△BEH與△EHC時等高的兩個三角形,求面積比,也就是求底邊的比,即BH:CH;在△CDH中利用勾股定理,可求DH,即AB的值,用其一半與EF比較,相等則切于F,否則不成立.
點評:此題主要考查梯形的性質、勾股定理、菱形的判定、三角形面積及圓的切線的判定.本題比較復雜,信息量較大,需要同學們熟知梯形及三角形中位線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案