若關于、的代數(shù)式中不含三次項,則              
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

平移拋物線F1,使其經(jīng)過F1的頂點A,得到拋物線F2,設F2的對稱軸分別交Fl、F2于點D、B,點C是點A關于直線BD的對稱點.
(1)如圖1,若F1:y=
1
3
x2,平移后得到F2,使得四邊形ABCD為正方形,求F2的解析式;
(2)如圖2,將(1)中“y=
1
3
x2”改為“y=ax2+bx+c”,其余條件不變,求正方形ABCD的面積(用含有a的代數(shù)式表示);
(3)如圖3,將(1)中“y=
1
3
x2”改為“y=
1
3
x2-
2
3
x+
7
3
”,“正方形ABCD”改為“AC=2
3
,且點P是直線AC上的動點”,求點P到真線AD的距離與到點D的距離之和的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,點D、E從點C同時出發(fā),分別以1cm/s和2cm/s的速度沿著射線CB向右移動,以DE為一邊在直線BC的上方作等邊△DEF,連接CF,設點D、E運動的時間為t秒.
(1)△DEF的邊長為
 
(用含有t的代數(shù)式表示),當t=
 
秒時,點F落在AB上;
(2)t為何值時,以點A為圓心,AF為半徑的圓與△CDF的邊所在的直線相切?
(3)設點F關于直線AB的對稱點為G,在△DEF運動過程中,是否存在某一時刻t,使得以A、C、E、G為頂點的四邊形為梯形?若存在,請直接寫出t的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5.點P從點C出發(fā)沿CA以每秒1個單位長的速度向點A勻速運動,到達點A后立刻以原來的速度沿AC返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BC-CP于點E.點P、Q同時出發(fā),當點Q到達點B時停止運動,點P也隨之停止.設點P、Q運動的時間是t秒(t>0).
(1)當t=2時,AP=
1
1
,點Q到AC的距離是
8
5
8
5

(2)在點P從C向A運動的過程中,將△APQ的面積S用關于t的代數(shù)式來表示;(不必寫出t的取值范圍)
(3)在點E從B向C運動的過程中,四邊形QBED能否成為直角梯形?若能,求t所有可能的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省常州市中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=3,AB=5.點P從點C出發(fā)沿CA以每秒1個單位長的速度向點A勻速運動,到達點A后立刻以原來的速度沿AC返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BC-CP于點E.點P、Q同時出發(fā),當點Q到達點B時停止運動,點P也隨之停止.設點P、Q運動的時間是t秒(t>0).
(1)當t=2時,AP=______,點Q到AC的距離是______;
(2)在點P從C向A運動的過程中,將△APQ的面積S用關于t的代數(shù)式來表示;(不必寫出t的取值范圍)
(3)在點E從B向C運動的過程中,四邊形QBED能否成為直角梯形?若能,求t所有可能的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案