【題目】如圖1,已知,點、分別是直線、上的兩點.將射線繞點順時針勻速旋轉(zhuǎn),將射線繞點順時針勻速旋轉(zhuǎn),旋轉(zhuǎn)后的射線分別記為、,已知射線、射線旋轉(zhuǎn)的速度之和為6度/秒.
(1)射線先轉(zhuǎn)動得到射線,然后射線、再同時旋轉(zhuǎn)10秒,此時射線與射線第一次出現(xiàn)平行.求射線、的旋轉(zhuǎn)速度;
(2)若射線、分別以(1)中速度同時轉(zhuǎn)動秒,在射線與射線重合之前,設射線與射線交于點,過點作于點,設,,如圖2所示.
①當時,求、、滿足的數(shù)量關(guān)系;
②當時,求和滿足的數(shù)量關(guān)系.
【答案】(1)射線、的旋轉(zhuǎn)速度分別為5度/秒、1度/秒;(2)①當時, ;②.
【解析】
(1)設射線的旋轉(zhuǎn)速度為度/秒、則的旋轉(zhuǎn)速度度/秒,根據(jù)題意列出方程求解即可;
(2)①根矩,求出,再根據(jù),求出,即可求解;
②由(1)知射線、的旋轉(zhuǎn)速度分別為5度/秒、1度/秒,可得,,再算,再求出即可求解.
解:(1)設射線的旋轉(zhuǎn)速度為度/秒、則的旋轉(zhuǎn)速度度/秒,
依題意得:
解得
∴
答:射線、的旋轉(zhuǎn)速度分別為5度/秒、1度/秒.
(2)①∵
∴
∴
∵
∴
∴
∴
∴,
∴當時,
②由(1)知射線、的旋轉(zhuǎn)速度分別為5度/秒、1度/秒
當射線、同時轉(zhuǎn)動秒后,
,,
∴,,
∴,
∵,
∴
∵,
∴,又
∴
即.
科目:初中數(shù)學 來源: 題型:
【題目】(8分)在學習概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請你設計一個對小明和小剛都公平的方案.
甲同學的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果點P(2x+6,x-4)在平面直角坐標系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(3,0),B(0,3),過點B畫y軸的垂線l,點C在線段AB上,連結(jié)OC并延長交直線l于點D,過點C畫CE⊥OC交直線l于點E.
(1)求∠OBA的度數(shù),并直接寫出直線AB的解析式;
(2)若點C的橫坐標為2,求BE的長;
(3)當BE=1時,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線交AB,AC于點D,E.
(1)求證:AE=2CE;
(2)當DE=1時,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣8,﹣1),B(﹣6,﹣9),C(﹣2.﹣9),D(﹣4,﹣1).先將四邊形ABCD沿x軸翻折,再向右平移8個單位長度,向下平移1個單位長度后,得到四邊形A1B1C1D1,最后將四邊形A1B1C1D1,繞著點A1旋轉(zhuǎn),使旋轉(zhuǎn)后的四邊形對角線的交點落在x軸上,則旋轉(zhuǎn)后的四邊形對角線的交點坐標為( 。
A. (4,0) B. (5,0) C. (4,0)或(﹣4,0) D. (5,0)或(﹣5,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點P從點A出發(fā)以每秒1cm的速度向點C運動,設運動時間為t秒(t>0).
(1)若點P恰好在∠ABC的角平分線上,求出此時t的值;
(2)若點P使得PB+PC=AC時,求出此時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)y=-x2+2x+m的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.
(1)求m的值;
(2)求點B的坐標;
(3)該二次函數(shù)圖象上有一點D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線的解析表達式為,且與軸交于點,直線經(jīng)過點,直線, 交于點.
(1)求點的坐標;
(2)求直線的解析表達式;
(3)求的面積;
(4)在直線上存在異于點的另一點,使得與的面積相等,請直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com