精英家教網 > 初中數學 > 題目詳情

如圖,在菱形ABCD中,對角線AC,BD分別等于8和6,將BD沿CB的方向平移,使D與A重合,B與CB延長線上的點E重合,則四邊形AECD的面積等于


  1. A.
    36
  2. B.
    48
  3. C.
    72
  4. D.
    96
A
分析:根據平移的意義知四邊形AEBD是平行四邊形,S△ABE=S△ABD=S菱形ABCD.故由菱形對角線的長度求其面積即可解決問題.
解答:依題意,AE∥DB,AE=DB.
∴四邊形AEBD是平行四邊形,
∴S△ABE=S△ABD
∵在菱形ABCD中,
S△ABD=S△BCD=S菱形ABCD=×=12.
∴四邊形AECD的面積等于12×3=36.
故選A.
點評:本題主要考查菱形的性質,注意熟練掌握菱形的面積公式:對角線的積的一半.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為(  )
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習冊答案