已知如下圖,△ABC中,AB=AC,E是BA延長(zhǎng)線(xiàn)上一點(diǎn),F(xiàn)是AC上一點(diǎn),AE=AF,求證:EF⊥BC.
證明:略. 分析:欲證EF⊥BC,而B(niǎo)C是等腰三角形ABC的底邊,聯(lián)想等腰三角形“三線(xiàn)合一”性質(zhì),作AD⊥BC于D.有∠1=∠2,而∠BAC(∠1+∠2)=∠3+∠E,又由AE=AF知∠3=∠E,于是得∠2=∠3(或∠1=∠E),從而EF∥AD,因此EF⊥BC. 說(shuō)明:根據(jù)等腰三角形“三線(xiàn)合一”性質(zhì)作出等腰三角形底邊上的高,迅速找到了解題途徑. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:044
已知如下圖,△ABC中,AD平分∠BAC,DE∥AC,EF∥BC,AB=15,AF=4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:044
已知如下圖,△ABC中,∠C=90°,P是AB上一點(diǎn),且點(diǎn)P不與點(diǎn)A重合,過(guò)點(diǎn)P作PE⊥AB交AC邊于點(diǎn)E,點(diǎn)E不與點(diǎn)C重合,若AB=10,AC=8,設(shè)AP的長(zhǎng)為x,四邊形PECB的周長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式,并求自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:044
已知如下圖,△ABC中,∠A=90°,AB=AC=6 cm,EFGH是正方形,求這個(gè)正方形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如下圖,△ABC中,AD平分∠BAC,DE∥AC交AB于E,EF平分∠AED交AC于F,AD、EF相交于點(diǎn)G,求證:AD、EF互相平分.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com