如圖,兩個(gè)同心圓的圓心是O,大圓的半徑為10,小圓的半徑為6,AD是大圓的直徑.大圓的弦AB,BE分別與小圓相切于點(diǎn)C,F(xiàn).AD,BE相交于點(diǎn)G,連接BD.
(1)求BD的長(zhǎng);
(2)求∠ABE+2∠D的度數(shù);
(3)求
BG
AG
的值.
考點(diǎn):圓的綜合題
專題:
分析:(1)連接OC,BD,AE,根據(jù)OC∥BD,OC為△ABD的中位線,可知:BD=2OC,得BD的長(zhǎng);
(2)連接AE,根據(jù)切線長(zhǎng)定理知:AB=EB,可得:∠BAE=∠BEA;根據(jù)圓周角相等,得:∠D=∠AEB,可將∠ABE+2∠D的值求出;
(3)根據(jù)△BGO∽△AGB,可將
BG
AG
的值求出.
解答:解:(1)連接OC,并延長(zhǎng)BO交AE于點(diǎn)H,
∵AB是小圓的切線,C是切點(diǎn),
∴OC⊥AB,
∴C是AB的中點(diǎn).
∵AD是大圓的直徑,
∴O是AD的中點(diǎn).
∴OC是△ABD的中位線.
∴BD=2OC=12;

(2)連接AE,由(1)知C是AB的中點(diǎn).
同理F是BE的中點(diǎn).
由切線長(zhǎng)定理得BC=BF.
∴BA=BE.
∴∠BAE=∠E.
∵∠E=∠D,
∴∠ABE+2∠D=∠ABE+∠E+∠BAE=180°;

(3)連接BO,在Rt△OCB中,
∵OB=10,OC=6,
∴BC=8.
由(2)知∠OBG=∠OBC=∠OAC.
∵∠BGO=∠AGB,
∴△BGO∽△AGB.
BG
AG
=
OB
AB
=
5
8
點(diǎn)評(píng):本題考查了圓的綜合題.在解本題的過(guò)程中要用到切線長(zhǎng)定理,中位線定理,相似三角形的判定等知識(shí),要求學(xué)生熟練掌握和應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.
(1)如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段
 

(2)在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請(qǐng)作出這個(gè)圓,并說(shuō)明你的理由.友情提醒:“尺規(guī)作圖”不要求寫(xiě)作法,但要保留作圖痕跡.
(3)如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的對(duì)角線交點(diǎn),連結(jié)BD,當(dāng)BD平分∠ABC時(shí),則四邊形ACEF為
 
(填特殊的四邊形名稱)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

P為以r為半徑的⊙O外一點(diǎn),T是⊙O上一點(diǎn),PO交⊙O于A點(diǎn),cos∠OPT=
3
2
,∠OAT=60°,PBC為⊙O割線
(1)求證:PT是切線;
(2)設(shè)PB為x,PC為y求y與x的函數(shù)關(guān)系式,并指出x的取值范圍;
(3)由(2)中,若x、y是關(guān)于z的方程4z2-14rz+k=0的兩根,且弦長(zhǎng)BC=l,求半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)∠DCA的度數(shù);
(2)∠DCE的度數(shù);
(3)作BF垂直AC于F,求∠EBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:在等腰直角三角形中,AB=AC,點(diǎn)D是斜邊BC上的中點(diǎn),點(diǎn)E、F分別為AB,AC上的點(diǎn),且DE⊥DF.
(1)若設(shè)BE=a,CF=b,滿足
a-12
+|b-5|=
m-2
+
2-m
,求BE及CF的長(zhǎng).
(2)求證:BE2+CF2=EF2
(3)在(1)的條件下,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)或計(jì)算:
(1)
0.09
-
0.36
+
1-
7
16

(2)6
2
+8
2
-5
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD,M是AD邊上一點(diǎn).

(1)如圖1,AM=MD,BM交AC于F點(diǎn),BM的延長(zhǎng)線與CD的延長(zhǎng)線交于點(diǎn)E,連AE,求證:
MF
BF
=
EM
EB
;
(2)如圖2,AM=MD,過(guò)點(diǎn)D任意作直線與BM,BC的延長(zhǎng)線分別交于點(diǎn)E,點(diǎn)P,連AE,求證:∠EAD=∠PAD;
(3)如圖3,E是CD延長(zhǎng)線上一點(diǎn),P是BC延長(zhǎng)線上一點(diǎn),AP交CD與Q點(diǎn),BE交AD于M點(diǎn),延長(zhǎng)AD交EP于N點(diǎn),若M是AN的中點(diǎn),且AB=3,BC=4,求△AEP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為R的半圓O,過(guò)直徑AB上一點(diǎn)C,作CD⊥AB交半圓于點(diǎn)D,且CD=
3
2
R,則AC的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BC=6,E、F分別是AB、AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BP交CE于D,∠CBP的平分線交CE于Q.
當(dāng)CQ=
1
3
CE時(shí),EP+BP=
 

當(dāng)CQ=
1
n
CE時(shí),EP+BP=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案