如圖,在△ABC中,∠ABC=90°,以AB的中點(diǎn)O為圓心,OA為半徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=2CD•OE;
(3)若cos∠BAD=,BE=,求OE的長(zhǎng).
(1)證明:連接OD,BD,
∵AB為圓O的直徑,
∴∠ADB=90°,
在Rt△BDC中,E為斜邊BC的中點(diǎn),
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD為圓的半徑,
∴DE為圓O的切線;
(2)證明:∵E是BC的中點(diǎn),O點(diǎn)是AB的中點(diǎn),
∴OE是△ABC的中位線,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD=,
∴sin∠BAC==,
又∵BE=,E是BC的中點(diǎn),即BC=,
∴AC=.
又∵AC=2OE,
∴OE=AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)定點(diǎn),點(diǎn)P是雙曲線y=(x>0)上的一個(gè)動(dòng)點(diǎn),PB⊥y軸于點(diǎn)B,當(dāng)點(diǎn)P的橫坐標(biāo)逐漸增大時(shí),四邊形OAPB的面積將會(huì)( 。
| A. | 逐漸增大 | B. | 不變 | C. | 逐漸減小 | D. | 先增大后減小 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O的直徑CD垂直于弦AB,垂足為E,F(xiàn)為DC延長(zhǎng)線上一點(diǎn),且∠CBF=∠CDB.
(1)求證:FB為⊙O的切線;
(2)若AB=8,CE=2,求sin∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)a,b,c,d為實(shí)數(shù),現(xiàn)規(guī)定一種新的運(yùn)算=ad﹣bc,則滿足等式=1的x的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在正方形網(wǎng)格中有一邊長(zhǎng)為4的平行四邊形ABCD,請(qǐng)將其剪拼成一個(gè)有一邊長(zhǎng)為6的矩形.(要求:在答題卡的圖中畫出裁剪線即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com