AB為⊙O的直徑,C為⊙O上一點,AD和過C點的切線相交于D,和⊙O相交于E.如果AC平分∠DAB,
(1)求證:∠ADC=90°;
(2)若AB=2r,AD=
8
5
r,求DE.
(1)證明:連接OC,
∵CD是⊙O的切線,
∴OC⊥CD,(1分)
∵OA=OC,
∴∠1=∠2,
∵∠2=∠3,∴∠1=∠3,
∴ADOC,(2分)
∴AD⊥CD,
即∠ADC=90°.(3分)

(2)連接BC,則∠ACB=90°,(4分)
由(1)得∠2=∠3,∠ACB=∠ADC=90°,
∴Rt△ABCRt△ACD,
AC
AD
=
AB
AC
,(5分)
即AC2=AB•AD=2r
8
5
r=
16
5
r2

又∵CD2=AC2-AD2=
16
5
r2-
64
25
r2=
16
25
r2
,
且CD2=DE•AD,
∴DE=
CD2
AD
=
16
25
r2
8
5
r
=
2
5
r
.(7分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以點C為圓心,以2cm的長為半徑作圓,則⊙C與AB的位置關(guān)系是( 。
A.相離B.相切C.相交D.相切或相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,切點為C,若AB=2
3
cm,OA=2cm,則圖中陰影部分(扇形)的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC是直角三角形,∠ABC=90°,以AB為直徑的⊙O交AC于點E,點D是BC邊的中點,連接DE.
(1)試判斷直線DE與⊙O的位置關(guān)系?并說明理由;
(2)若⊙O的半徑為
3
,DE=3,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的直線交OA延長線于點R,且RP=RQ
求證:直線QR是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

Rt△ABC的斜邊AB=5,直角邊AC=3,若AB與⊙C相切,則⊙C的半徑是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O是△ABC的外接圓,過點C的切線交AB的延長線于點D,CD=2
7
,AB=BC=3.求BD和AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,EC切⊙O于點C,若∠BOC=76°,則∠BCE的度數(shù)是( 。
A.14°B.38°C.52°D.76°

查看答案和解析>>

同步練習(xí)冊答案