解:方法1:
∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,
∴∠BAC=60°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=
∠BAC=
×60°=30°,
∵AD是BC上的高,
∴∠B+∠BAD=90°,
∴∠BAD=90°-∠B=90°-75°=15°,
∴∠DAE=∠BAE-∠BAD=30°-15°=15°,
在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°;
方法2:同方法1,得出∠BAC=60°.
∵AE平分∠BAC,
∴∠EAC=
∠BAC=
×60°=30°.
∵AD是BC上的高,
∴∠C+∠CAD=90°,
∴∠CAD=90°-45°=45°,
∴∠DAE=∠CAD-∠CAE=45°-30°=15°.
∵∠AEC+∠C+∠EAC=180°,
∴∠AEC+30°+45°=180°,
∴∠AEC=105°.
答:∠DAE=15°,∠AEC=105°.
分析:由∠B=75°,∠C=45°,利用三角形內(nèi)角和求出∠BAC.又AE平分∠BAC,求出∠BAE、∠CAE.再利用AD是BC上的高在△ABD中求出∠BAD,此時就可以求出∠DAE.最后利用三角形的外角和內(nèi)角的關(guān)系可以求出∠AEC.
點評:此題主要考查了三角形的內(nèi)角,外角以及和它們相關(guān)的一些結(jié)論,圖形比較復(fù)雜,對于學(xué)生的視圖能力要求比較高.