已知A1、A2、A3是拋物線上的三點(diǎn),A1B1、A2B2、A3B3分別垂直于x軸,垂足為B1、B2、B3,直線A2B2交線段A1A3于點(diǎn)C。

(1) 如圖1,若A1、A2、A3三點(diǎn)的橫坐標(biāo)依次為1、2、3,求線段CA2的長(zhǎng)。

(2)如圖2,若將拋物線改為拋物線,A1、A2、A3三點(diǎn)的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,求線段CA2的長(zhǎng)。

(3)若將拋物線改為拋物線,A1、A2、A3三點(diǎn)的橫坐標(biāo)為連續(xù)整數(shù),其他條件不變,請(qǐng)猜想線段CA2的長(zhǎng)(用a、b、c表示,并直接寫出答案)。

解:(1)∵A1、A2、A3三點(diǎn)的橫坐標(biāo)依次為1、2、3,

∴A1B1= ,A2B2,A3B3

設(shè)直線A1A3的解析式為y=kx+b。

解得

∴直線A1A2的解析式為。

∴CB2=2×2-

∴CA2=CB2-A2B2=-2=。

 (2)設(shè)A1、A2、A3三點(diǎn)的橫坐標(biāo)依次n-1、n、n+1。

        則A1B1= ,A2B2=n2-n+1,

         A3B3=(n+1)2-(n+1)+1。

設(shè)直線A1A3的解析式為y=kx+b

解得

∴直線A1A3的解析式為

∴CB2=n(n-1)-n2n2-n+

∴CA2= CB2-A2B2=n2-n+n2+n-1=。

     (3)當(dāng)a>0時(shí),CA2=a;當(dāng)a<0時(shí),CA2=-a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A1,A2,A3,…,An是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=AnAn+1=1,分別過(guò)點(diǎn)A1,A2,A3,…,An+1作x軸的垂線交一次函數(shù)y=
12
x的圖象于點(diǎn)B1,B2,B3,…,Bn+1,連接A1B2,B1A2,A2B3,B2A3,…,AnBn+1,BnAn+1依次產(chǎn)生交點(diǎn)P1,P2,P3,…,Pn,則Pn的橫坐標(biāo)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A1,A2,A3,…,A2006是x軸上的點(diǎn),且OA1=A1A2=A2A3=…=A2005A2006=1,分別過(guò)點(diǎn)A1,A2,A3,…,A2006作x軸的垂線交二次函數(shù)y=x2(x≥0)的圖象于點(diǎn)P1,P2,P3,…,P2006點(diǎn),若記△OA1P1的面積為S1,過(guò)點(diǎn)P1作P1B1⊥A2P2于點(diǎn)B1,記△P1B1P2的面積為S2,過(guò)點(diǎn)P2作P2B2⊥A3P3于點(diǎn)B2,記△P2B2P3的面積為S3,…,依次進(jìn)行下去,最后記△P2005B2005P2006的面積為S2006,則S2006-S2005=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a1,a2,a3,…,an的平均數(shù)為2,方差為5,則2a1,2a2,2a3,…,2an的平均數(shù)為
2
2
,方差為
20
20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x、y、z的方程組
x+y=a1
y+z=a2
z+x=a3
中,已知a1>a2>a3,那么將x、y、z從大到小排起來(lái)應(yīng)該是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a1,a2,a3,…,a1996,a1997均為正數(shù),又M=(a1+a2+…+a1996)(a2+a3+…+a1997),N=(a1+a2+…+a1997)(a2+a3+…+a1996),則M與N的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案