(2002•安徽)心理學(xué)家發(fā)現(xiàn),學(xué)生對(duì)概念的接受能力y與提出概念所用的時(shí)間x(單位:分)之間滿足函數(shù)關(guān)系:y=-0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越強(qiáng).
(1)x在什么范圍內(nèi),學(xué)生的接受能力逐步增加?x在什么范圍內(nèi),學(xué)生的接受能力逐步降低?
(2)第10分鐘時(shí),學(xué)生的接受能力是多少?
(3)第幾分鐘時(shí),學(xué)生的接受能力最強(qiáng)?
【答案】分析:(1)根據(jù)函數(shù)關(guān)系式求對(duì)稱軸方程、頂點(diǎn)坐標(biāo),結(jié)合草圖回答問(wèn)題;
(2)求x=10時(shí)y的值;
(3)求函數(shù)的最大值.
解答:解:(1)∵y=-0.1(x2-26x+169)+16.9+43=-0.1(x-13)2+59.9
∴對(duì)稱軸是:直線x=13
即當(dāng)(0≤x≤13)提出概念至(13分)之間,學(xué)生的接受能力逐步增強(qiáng);
當(dāng)(13≤x≤30)提出概念(13分)至(30分)之間,學(xué)生的接受能力逐步下降;

(2)當(dāng)x=10時(shí),y=-0.1×102+2.6×10+43=59;

(3)∵y=-0.1(x-13)2+59.9
∴k=-0.1<0,開口方向向下,函數(shù)有最大值,
當(dāng)x=13時(shí),y最大59.9即第(13分)鐘時(shí),學(xué)生的接受能力最強(qiáng).
點(diǎn)評(píng):此題重在訓(xùn)練二次函數(shù)性質(zhì)的應(yīng)用,涉及求頂點(diǎn)坐標(biāo)、對(duì)稱軸方程、最值問(wèn)題等,常用配方法結(jié)合圖象解答問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2002•安徽)已知一次函數(shù)的圖象與雙曲線交于點(diǎn)(-1,m),且過(guò)點(diǎn)(0,1),求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2002•安徽)附加題:求直線y=3-x與圓x2+y2=5的交點(diǎn)的坐標(biāo).(華東版教材實(shí)驗(yàn)區(qū)試題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年安徽省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•安徽)附加題:求直線y=3-x與圓x2+y2=5的交點(diǎn)的坐標(biāo).(華東版教材實(shí)驗(yàn)區(qū)試題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年安徽省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•安徽)已知一次函數(shù)的圖象與雙曲線交于點(diǎn)(-1,m),且過(guò)點(diǎn)(0,1),求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年安徽省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•安徽)解方程組

查看答案和解析>>

同步練習(xí)冊(cè)答案