已知拋物線C1與x軸的一個交點為交于(-4,0),對稱軸為直線x=-1.5,

并過點(-1,6)

1.求拋物線C1的解析式;

2.求出與拋物線C1關(guān)于原點對稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖像;

3.在(2)的條件下,拋物線C1 與拋物線C2與相交于A,B兩點(點A在點B的左側(cè)).

①求出點A和點B的坐標(biāo);

②點P在拋物線上,且位于點A和點B之間;點Q在拋物線上,也位于點A和點B之間.當(dāng)PQ∥軸時,求PQ長度的最大值.

 

【答案】

 

1.C1

2.

3.①A (-2,6);B (2,-6)②PQ的最大值為8

【解析】⑴ C1                   ……2分

                    ……4分

其圖像如圖所示                             ……5分

⑶ ①A (-2,6);B (2,-6)                   ……7分

② 設(shè)P(a,b),則-2≤a≤2,

因為PQ∥y軸,所以點Q的橫坐標(biāo)為a,則,

所以PQ==,                   ……9分

即當(dāng)a=0時,PQ的最大值為8

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線C1與x軸的一個交點為交于(-4,0),對稱軸為x=-1.5,并過點(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關(guān)于原點對稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(點A在點B的左側(cè)),
①求出點A和點B的坐標(biāo);
②點P在拋物線C1上,且位于點A和點B之間;點Q在拋物線C2上,也位于點A和點B之間、當(dāng)PQ∥y軸時,求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)己知二次函數(shù)y1=x2-2tx+(2t-1)(t>1)的圖象為拋物線C1
(1)求證:無論t取何值,拋物線C1與y軸總有兩個交點;
(2)已知拋物線C1與x軸交于A、B兩點(A在B的左側(cè)),將拋物線C1作適當(dāng)?shù)钠揭疲脪佄锞C2y2=(x-t)2,平移后A、B的對應(yīng)點分別為D(m,n),E(m+2,n),求n的值.
(3)在(2)的條件下,將拋物線C2位于直線DE下方的部分沿直線DE向上翻折后,連同C2在DE上方的部分組成一個新圖形,記為圖形G,若直線y=-
12
x+b
(b<3)與圖形G有且只有兩個公共點,請結(jié)合圖象求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011—2012學(xué)年江蘇無錫育才中學(xué)第二學(xué)期第一次模擬考試數(shù)學(xué)卷(帶解析) 題型:解答題

已知拋物線C1與x軸的一個交點為交于(-4,0),對稱軸為直線x=-1.5,
并過點(-1,6)
【小題1】求拋物線C1的解析式;
【小題2】求出與拋物線C1關(guān)于原點對稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖像;
【小題3】在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(點A在點B的左側(cè)).
①求出點A和點B的坐標(biāo);
②點P在拋物線上,且位于點A和點B之間;點Q在拋物線上,也位于點A和點B之間.當(dāng)PQ∥軸時,求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市育才中學(xué)九年級(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線C1與x軸的一個交點為交于(-4,0),對稱軸為x=-1.5,并過點(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關(guān)于原點對稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(點A在點B的左側(cè)),
①求出點A和點B的坐標(biāo);
②點P在拋物線C1上,且位于點A和點B之間;點Q在拋物線C2上,也位于點A和點B之間、當(dāng)PQ∥y軸時,求PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省無錫市錫山高級中學(xué)實驗學(xué)校中考適應(yīng)性訓(xùn)練數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線C1與x軸的一個交點為交于(-4,0),對稱軸為x=-1.5,并過點(-1,6),
(1)求拋物線C1的解析式;
(2)求出與拋物線C1關(guān)于原點對稱的拋物線C2的解析式,并在C1所在的平面直角坐標(biāo)系中畫出C2的圖象;
(3)在(2)的條件下,拋物線C1與拋物線C2與相交于A,B兩點(點A在點B的左側(cè)),
①求出點A和點B的坐標(biāo);
②點P在拋物線C1上,且位于點A和點B之間;點Q在拋物線C2上,也位于點A和點B之間、當(dāng)PQ∥y軸時,求PQ長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案