7、已知點(diǎn)P既在直線y=-3x-2上,又在直線y=2x+8上,則P點(diǎn)的坐標(biāo)為
(-2,4)
分析:可設(shè)此點(diǎn)的坐標(biāo)為(a,b)分別代入解析式求解方程組即可.
解答:解:根據(jù)題意,設(shè)點(diǎn)P的坐標(biāo)為(a,b),
代入兩個(gè)解析式可得,b=-3a-2①,b=2a+8②,
由①②可解得:a=-2,b=4,
∴P點(diǎn)的坐標(biāo)為(-2,4).
點(diǎn)評(píng):本題考查了一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,是基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點(diǎn)D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)P作PE⊥y軸,垂足為E,連接BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

已知點(diǎn)P既在直線y=-3x-2上,又在直線y=2x+8上,則P點(diǎn)的坐標(biāo)為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P既在直線y=-3x-2上,又在直線y=2x+8上,則P點(diǎn)的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年福建省泉州市南安市初中學(xué)業(yè)質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線y=-x2+2x+c與y軸交于點(diǎn)D(0,3).
(1)直接寫出c的值;
(2)若拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右邊),頂點(diǎn)為C點(diǎn),求直線BC的解析式;
(3)已知點(diǎn)P是直線BC上一個(gè)動(dòng)點(diǎn),
①當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(點(diǎn)P不與B、C重合),過(guò)點(diǎn)P作PE⊥y軸,垂足為E,連接BE.設(shè)點(diǎn)P的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
②試探索:在直線BC上是否存在著點(diǎn)P,使得以點(diǎn)P為圓心,半徑為r的⊙P,既與拋物線的對(duì)稱軸相切,又與以點(diǎn)C為圓心,半徑為1的⊙C相切?如果存在,試求r的值,并直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案