已知關于x的一元二次方程x2+(2a-1)x+a2=0(a為整數(shù))的兩個實數(shù)根是x1、x2,則數(shù)學公式=________.

±1
分析:因為原方程又兩個實數(shù)根,那么根據根的判別式△=b2-4ac,可求出a的取值范圍a≤,而a為整數(shù),那么就有a≤0,再根據根與系數(shù)的關系可得x1+x2=-=1-2a①,x1x2==a2②,所求的式子直接求不好求,就求它的平方,展開后,再把①②代入,計算即可.
解答:根據題意得
x1+x2=-=1-2a①,x1x2==a2②,
且△=b2-4ac=-4a+1≥0,
即a≤,
又∵a為整數(shù),
∴a≤0,
又∵(-2=x1+x2-2=1-2a-2,而a≤0,
∴(-2=1-2a-2(-a)=1,
-=±1.
故答案為:±1.
點評:本題綜合考查了根的判別式和根與系數(shù)的關系,在解不等式時一定要注意數(shù)值的正負與不等號的變化關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2+(2k-3)x+k2=0的兩個實數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習冊答案