【題目】如圖所示是二次函數(shù)圖象的一部分,圖象過點,二次函數(shù)圖象對稱軸為直線,給出五個結論:①;②;③;④方程的根為,;⑤當時,隨著的增大而增大.其中正確結論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①④⑤
【答案】D
【解析】
根據(jù)拋物線的開口方向得a<0,對稱軸在y軸右側,得b>0,拋物線與y軸的正半軸相交,得c>0,故①正確;當x=1時,y=a+b+c>0,故②錯誤;當x=-2時,y=4a-2b+c<0,故③錯誤;根據(jù)對稱軸為x=1,與x軸交于點(3,0)可得與x軸的另一個交點(-1,0),故④正確;由拋物線的對稱性,得⑤正確.
∵拋物線的開口向下,
∴a<0,
∵對稱軸x=1在y軸右側,
∴b>0,
∵拋物線與y軸的正半軸相交,
∴c>0,故①正確;
當x=1時,y=a+b+c>0,故②錯誤;
當x=-2時,y=4a-2b+c<0,故③錯誤;
∵對稱軸為x=1,與x軸交于點(3,0),
∴與x軸的另一個交點(-1,0),故④正確;
由圖象得x<1時,y隨著x的增大而增大,故⑤正確;
正確結論有①④⑤,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】在平面角坐標系中,函數(shù)y=2x和y=-x的圖像分別為直線l1、l2,過點(1,0)作x軸的垂線交l2于點A1,過點A1作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l1于點A3,過點A3作y軸的垂線交l2于點A4,…,依次進行下去,則點A2020的坐標為_______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列方程及其解的特征:
(1)的解為;
(2)的解為,;
(3)的解為,;
解答下列問題:
請猜想:方程的解為________;
請猜想:關于的方程________的解為,;
下面以解方程為例,驗證中猜想結論的正確性.
解:原方程可化為.
(下面請大家用配方法寫出解此方程的詳細過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與坐標軸分別交于點、和點,動點從原點開始沿方向以每秒個單位長度移動,動點從點開始沿方向以每秒個單位長度移動,動點、同時出發(fā),當動點到達原點時,點、停止運動.
直接寫出拋物線的解析式:________;
求的面積與點運動時間的函數(shù)解析式;當為何值時,的面積最大?最大面積是多少?
當的面積最大時,在拋物線上是否存在點(點除外),使的面積等于的最大面積?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】王華、張偉兩位同學分別將自己10次數(shù)學自我檢測的成績繪制成如下統(tǒng)計圖:
(1)根據(jù)圖中提供的數(shù)據(jù)列出如下統(tǒng)計表:
平均成績(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(S2) | |
王華 | 80 | b | 80 | d |
張偉 | a | 85 | c | 260 |
則a= ,b= ,c= ,d= ,
(2)將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的是 .
(3)現(xiàn)在要從這兩個同學選一位去參加數(shù)學競賽,你可以根據(jù)以上的數(shù)據(jù)給老師哪些建議?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關于軸對稱的.
(2)寫出點的坐標(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)方法感悟:如圖①,在正方形ABCD中,點E、F分別為DC、BC邊上的點,且滿足∠EAF=45°,連接EF.將△ADE繞點A順時針旋轉90°得到△ABG,易證△GAF≌△EAF,從而得到結論:DE+BF=EF.根據(jù)這個結論,若CD=6,DE=2,求EF的長.
(2)方法遷移:如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,試猜想DE,BF,EF之間有何數(shù)量關系,證明你的結論.
(3)問題拓展:如圖③,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長線上的點,且∠EAF=∠BAD,試探究線段EF、BE、FD之間的數(shù)量關系,請直接寫出你的猜想(不必說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com