如圖,在平行四邊形ABCD中,AB=6,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且AB=3CF,DG⊥AE,垂足為G,若DG=2,則AE的邊長為(  )
A.4B.6C.6D.4
B.

試題分析:由AE為角平分線,得到∠DAE=∠BAE,再由ABCD為平行四邊形,得到AB//CD,∠BAE=∠DFA;所以DA=DF;由AB=6,AB=3CF可知:CF=2、DF=DA=4;由DG⊥AE,根據(jù)三線合一得到G為AF中點(diǎn),在直角三角形ADG中,由AD=4、DG=2得,所以;由AB//CD,可得△ABE∽△FCE,所以,解得:,所以.故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明對直角三角形很感興趣. △ABC中,∠ACB=90°,D是AB上任意一點(diǎn),連接DC,作DE⊥DC,EA⊥AC,DE與AE交于點(diǎn)E.請你跟著他一起解決下列問題:

(1)如圖1,若△ABC是等腰直角三角形,則DE,DC有什么數(shù)量關(guān)系?請給出證明.
(2)如果換一個(gè)直角三角形,如圖2,∠CBA=30°,則DE,DC又有什么數(shù)量關(guān)系?請給出證明.
(3)由(1)、(2)這兩種特殊情況,小明提出問題:如果直角三角形ABC中,BC=mAC,那DE, DC有什么數(shù)量關(guān)系?請給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,E為CD上一點(diǎn),連結(jié)AE,BD,且AE,BD交于點(diǎn)F,SDEF∶SABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點(diǎn)M,N同時(shí)從B點(diǎn)出發(fā),分別沿B?A,B?C運(yùn)動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當(dāng)點(diǎn)N到達(dá)終點(diǎn)C時(shí),點(diǎn)M也隨之停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒.

(1)若a=4厘米,t=1秒,則PM= _________ 厘米;
(2)若a=5厘米,求時(shí)間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運(yùn)動過程中,存在某時(shí)刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運(yùn)動過程中,存在某時(shí)刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,D是BC的中點(diǎn),且AD=AC,DE⊥BC,與AB相交于點(diǎn)E,EC與AD相交于點(diǎn)F.

(1)求證:△ABC∽△FCD;
(2)若DE=3,BC=8,求△FCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖:在△ABC中,點(diǎn)D、E分別在AB、AC上,∠ADE=∠C,且AD∶AC=2∶3,那么DE∶BC等于(   )

A.3∶1      B.1∶3            C.3∶4     D.2∶3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△和△中,,為線段上一點(diǎn),且
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是(     ).
A.三角形的重心是三角形三邊垂直平分線的交點(diǎn).
B.三角形的一條中位線與第三邊上的中線互相平分.
C.坡面的水平長度與鉛垂高度的比是坡比
D.相似三角形對應(yīng)高的比等于相似比的平方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在面積為24的菱形ABCD中,E、F分別是邊AD、BC的中點(diǎn),點(diǎn)G、H在DC邊上,且GH =DC.則圖中陰影部分面積為      

查看答案和解析>>

同步練習(xí)冊答案